Lecture 11

Disjoint-Set Data Structure

Source: Introduction to Algorithms, CLRS

Finding Friend Groups on Facebook

Finding Friend Groups on Facebook

Users:

Finding Friend Groups on Facebook

Users: 1 2 3 4 08

99

Finding Friend Groups on Facebook

arops: (1) (2) () (4

‘\'\’\/‘///,—_/v/

Make groups of individuals

Finding Friend Groups on Facebook

Merge them as 2 & 3 are friends

/\

Make groups of individuals

Groups:

Finding Friend Groups on Facebook

rovps: (1) @ @ ..

Finding Friend Groups on Facebook

Merge them as 4 & 98 are friends

roups: (1) @ \‘

Finding Friend Groups on Facebook

o (D (13)

Finding Friend Groups on Facebook

Merge them as 3 & 4 are friends

/\
o (D (13)

Finding Friend Groups on Facebook

Groups: @ 2 4
3 98

Finding Friend Groups on Facebook

Many merges later

Finding Friend Groups on Facebook

Many merges later

Groups:

There should be a way to tell to which group a user belongs.

17 65

09 30

Finding Friend Groups on Facebook

Many merges later

Groups:

There should be a way to tell to which group a user belongs.

We achieve that by having a representative for every group.

17 65

09 30

Finding Friend Groups on Facebook

Goal: Design a data-structure so that:

17 65

09 30

Finding Friend Groups on Facebook

Goal: Design a data-structure so that:

® Merging is fast.

17 65

09 30

Finding Friend Groups on Facebook

17 65

Groups: 80

99

Goal: Design a data-structure so that:

® Merging is fast.

® Finding representative is fast.

Finding Friend Groups on Facebook

17 65

Groups: 80

99

Goal: Design a data-structure so that: Instead of optimising the

® Merging is fast. cost of individual operations
«— we will optimise a sequence

® Finding representative is fast. of such operations.

Disjoint-set Data Structure

Disjoint-set Data Structure

Disjoint-set data structure maintains:

Disjoint-set Data Structure

Disjoint-set data structure maintains:

® A collection § = {5,5,,...,5,} of disjoint dynamic sets.

Disjoint-set Data Structure

Disjoint-set data structure maintains:
® A collection § = {5,5,,...,5,} of disjoint dynamic sets.

® A representative for each set which is a member of the set.

Disjoint-set Data Structure

Disjoint-set data structure maintains:
® A collection § = {5,5,,...,5,} of disjoint dynamic sets.

® A representative for each set which is a member of the set.

Operations of disjoint-set data structure:

Disjoint-set Data Structure

Disjoint-set data structure maintains:
® A collection § = {5,5,,...,5,} of disjoint dynamic sets.

® A representative for each set which is a member of the set.

Operations of disjoint-set data structure:

e Make-Set(x): Creates a new set with x as the only member. Make x its own representative.

Disjoint-set Data Structure

Disjoint-set data structure maintains:
® A collection § = {5,5,,...,5,} of disjoint dynamic sets.

® A representative for each set which is a member of the set.

Operations of disjoint-set data structure:

e Make-Set(x): Creates a new set with x as the only member. Make x its own representative.

e Union(x, y): Adds 5, U S, to the collection, where 5, and 5 contain x and y, respectively.

Disjoint-set Data Structure

Disjoint-set data structure maintains:
® A collection § = {5,5,,...,5,} of disjoint dynamic sets.

® A representative for each set which is a member of the set.

Operations of disjoint-set data structure:

e Make-Set(x): Creates a new set with x as the only member. Make x its own representative.

e Union(x, y): Adds 5, U S, to the collection, where 5, and 5 contain x and y, respectively.

Choose a representative for 5. U 5.

Disjoint-set Data Structure

Disjoint-set data structure maintains:
® A collection § = {5,5,,...,5,} of disjoint dynamic sets.

® A representative for each set which is a member of the set.

Operations of disjoint-set data structure:

e Make-Set(x): Creates a new set with x as the only member. Make x its own representative.

e Union(x, y): Adds 5, U S, to the collection, where 5, and 5 contain x and y, respectively.

Choose a representative tor 5, U 5,. Destroys 5, and §,.

Disjoint-set Data Structure

Disjoint-set data structure maintains:
® A collection § = {5,5,,...,5,} of disjoint dynamic sets.

® A representative for each set which is a member of the set.

Operations of disjoint-set data structure:

e Make-Set(x): Creates a new set with x as the only member. Make x its own representative.

e Union(x, y): Adds 5, U S, to the collection, where 5, and 5 contain x and y, respectively.

Choose a representative tor 5, U 5,. Destroys 5, and §,.

e Find-Set(x): Gives the representative of the unique set that contains x.

Applications of Disjoint-set Data Structure

Applications of Disjoint-set Data Structure

Disjoint-set data structure is usetul in:

Applications of Disjoint-set Data Structure

Disjoint-set data structure is usetul in:

® Finding friend groups on social networks.

Applications of Disjoint-set Data Structure

Disjoint-set data structure is usetul in:

® Finding friend groups on social networks.

® Finding connected components in graphs.

Applications of Disjoint-set Data Structure

Disjoint-set data structure is usetul in:

® Finding friend groups on social networks.
® Finding connected components in graphs.

® Kruskal's algorithms to find minimum spanning tree.

Applications of Disjoint-set Data Structure

Disjoint-set data structure is usetul in:

® Finding friend groups on social networks.
® Finding connected components in graphs.
® Kruskal's algorithms to find minimum spanning tree.

® Finding systems on the same network, etc.

Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

12

Disjoint-Sets as Linked Lists

Representatives

Disjoint-Sets as Linked Lists

Representatives

L
H
= o
Q.

H

Disjoint-Sets as Linked Lists

12

Head Head
Ta|| Ta||

S

10

11

20

Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

S U S, >

B e L e L e
12 []2 | |8
L 44— =

Head
Tail

10

11

20

Disjoint-Sets as Linked Lists

C U o s e Y e Y o Y
1S o [[
I S e TN e BN e BN e

Head
Tail

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Disjoint-Sets as Linked Lists

C U o Y O e O s O
1S o [[
e N e S T e N e B e

Head
Tail

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Claim: A sequence of m Make-Set, Union, and Find-Set operations,

Disjoint-Sets as Linked Lists

C U o Y O e O s O
1S o [[
e N e S T e N e B e

Head
Tail

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Claim: A sequence of m Make-Set, Union, and Find-Set operations, first n of which are Make-Set

Disjoint-Sets as Linked Lists

C U o s e Y e Y o Y
1S o [[
I S e TN e BN e BN e

Head
Tail

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Claim: A sequence of m Make-Set, Union, and Find-Set operations, first n of which are Make-Set

operations, takes O(m + nlogn) time under the above heuristic.

Disjoint-Sets as Linked Lists

C U o s e Y e Y o Y
1S o [[
I S e TN e BN e BN e

Head
Tail

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Claim: A sequence of m Make-Set, Union, and Find-Set operations, first n of which are Make-Set

operations, takes O(m + nlogn) time under the above heuristic.

Proof: DIY.

Disjoint-Sets as Trees

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

® Keep sets as rooted trees.

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

® Keep sets as rooted trees.

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

® Keep sets as rooted trees.

® Fach node points to its parent.

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

® Keep sets as rooted trees.

® Fach node points to its parent.

® Root is its own parent and the representative of the set.

Disjoint-Sets as Trees

Representative

Idea: We maintain the dynamic disjoint sets in the following way:

® Keep sets as rooted trees.

® Fach node points to its parent.

® Root is its own parent and the representative of the set.

Height in Disjoint-Sets as Trees

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Example:

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Example:

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Example:

¥—— Heights of all the nodes

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Example:

¥—— Heights of all the nodes

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Example:

¥—— Heights of all the nodes

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Example:

(0)

¥—— Heights of all the nodes

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Example:

¥—— Heights of all the nodes

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Example:

¥—— Heights of all the nodes

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Example:

¥—— Heights of all the nodes

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

longest path from a descendant leaf to x.

Example:

¥—— Heights of all the nodes

Union on Disjoint-Sets as Trees

Union on Disjoint-Sets as Trees

Union on Disjoint-Sets as Trees

Union on Disjoint-Sets as Trees

@ Union(3.,4)

——

Union on Disjoint-Sets as Trees

@ Union(3.,4)

Union on Disjoint-Sets as Trees

\ Make the

representative

@ Union(3,4) é
—_—

of one set point to

the representative
of the other set.

(==
OmOmOnOny©

Union on Disjoint-Sets as Trees

\ Make the

representative

@ Union(3.,4)

——

‘ of one set point to
@ the representative

of the other set.

Finding representative in the worst case will require 5 steps

Union on Disjoint-Sets as Trees

Shouldn’t representative with smaller height point to representative with larger height?

Union on Disjoint-Sets as Trees

@ Union(3.,4)

——

Union on Disjoint-Sets as Trees

@ Un10n(3 4)

\/

Finding representative in the worst case now requires 4 steps

