
Lecture 11

Disjoint-Set Data Structure

Source: Introduction to Algorithms, CLRS
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Many merges later

There should be a way to tell to which group a user belongs.
We achieve that by having a representative for every group.
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Groups:

Goal: Design a data-structure so that:

• Merging is fast.

• Finding representative is fast.
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Instead of optimising the 
cost of individual operations 
we will optimise a sequence 

of such operations.
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Disjoint-set Data Structure

Disjoint-set data structure maintains:

• A collection  of disjoint dynamic sets.S = {S1, S2, …, Sk}

Operations of disjoint-set data structure:

• Make-Set : Creates a new set with  as the only member. Make  its own representative.(x) x x

• Find-Set : Gives the representative of the unique set that contains .(x) x

Choose a representative for .Sx ∪ Sy Destroys  and .Sx Sy

• A representative for each set which is a member of the set.

• Union : Adds    to the collection, where  and  contain  and , respectively.(x, y) Sx ∪ Sy Sx Sy x y
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Applications of Disjoint-set Data Structure

Disjoint-set data structure is useful in:

• Finding friend groups on social networks.

• Finding connected components in graphs.

• Kruskal’s algorithms to find minimum spanning tree.

• Finding systems on the same network, etc.
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Disjoint-Sets as Linked Lists

Claim: A sequence of  Make-Set, Union, and Find-Set operations,m

Proof: DIY.

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

first  of which are Make-Setn
operations, takes  time under the above heuristic. O(m + n log n)
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Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

• Keep sets as rooted trees. 

• Each node points to its parent. 

• Root is its own parent and the representative of the set. 
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Defn: Height of a node  in a disjoint set represented as a tree is the number of edges in theX
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Height in Disjoint-Sets as Trees
Defn: Height of a node  in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

(3)

(0)

(2)

(1)

(0)

(1)

(0)
Heights of all the nodes
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