

Lecture 11

Disjoint-Set Data Structure

Source: Introduction to Algorithms, CLRS

Finding Friend Groups on Facebook

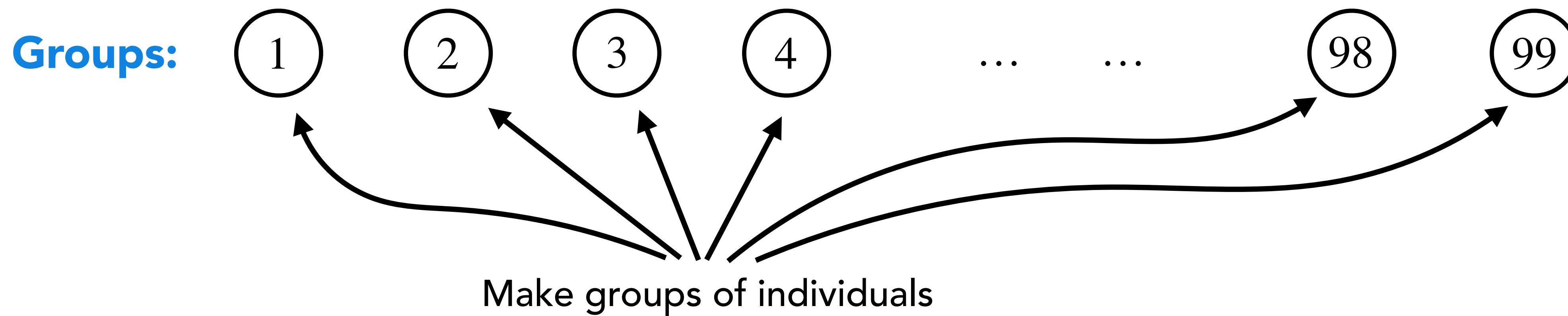
Finding Friend Groups on Facebook

Users:

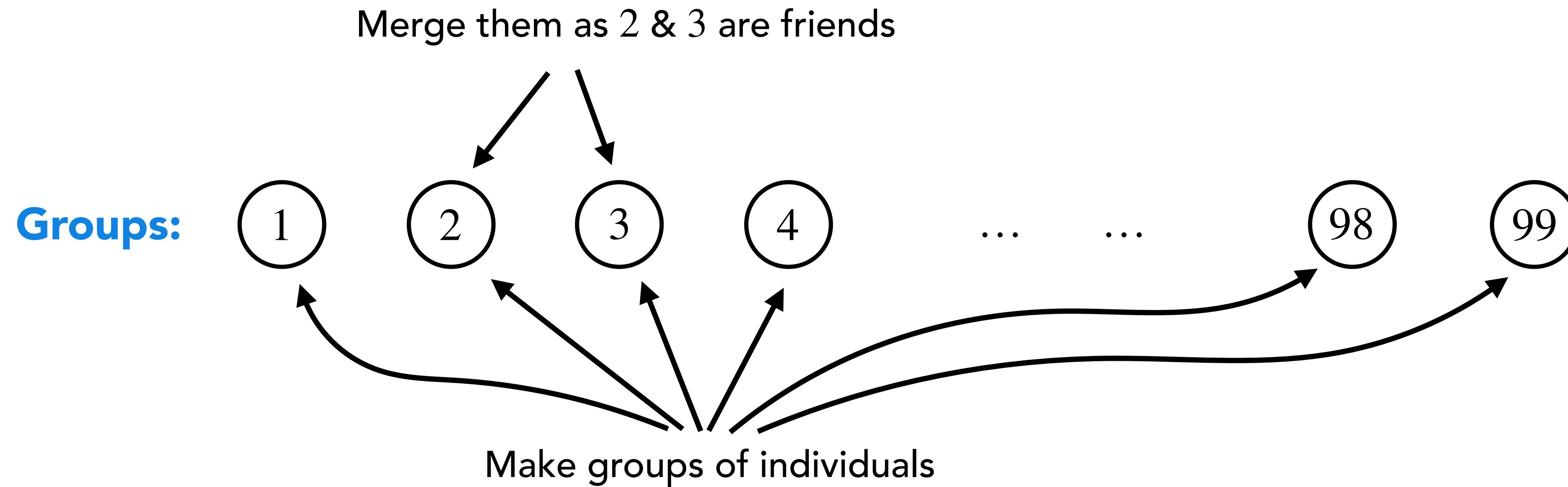
Finding Friend Groups on Facebook

Users: 1 2 3 4 98 99

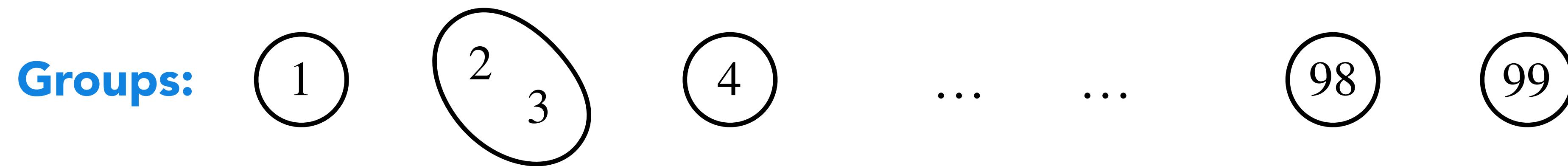
Finding Friend Groups on Facebook



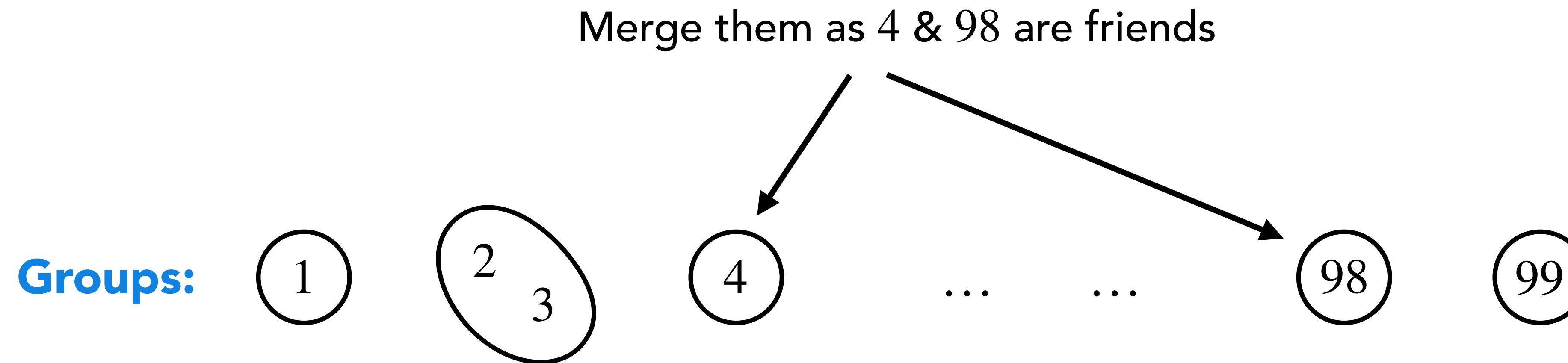
Finding Friend Groups on Facebook



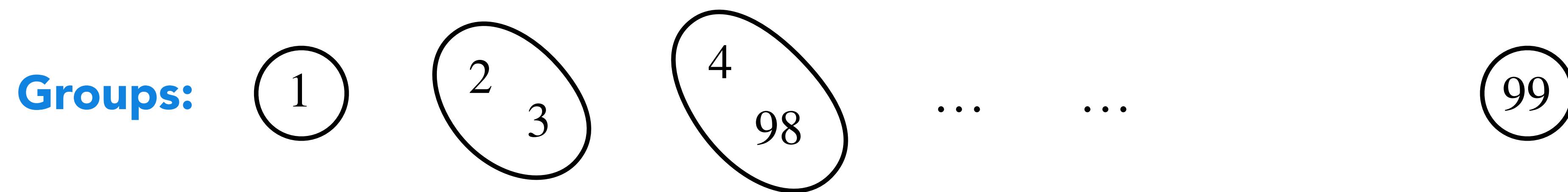
Finding Friend Groups on Facebook



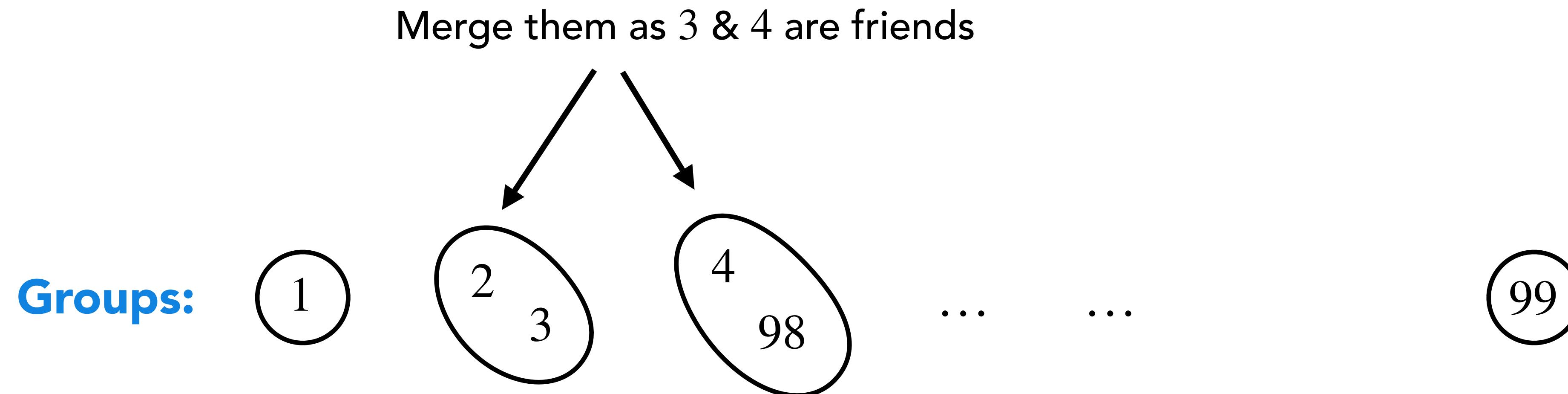
Finding Friend Groups on Facebook



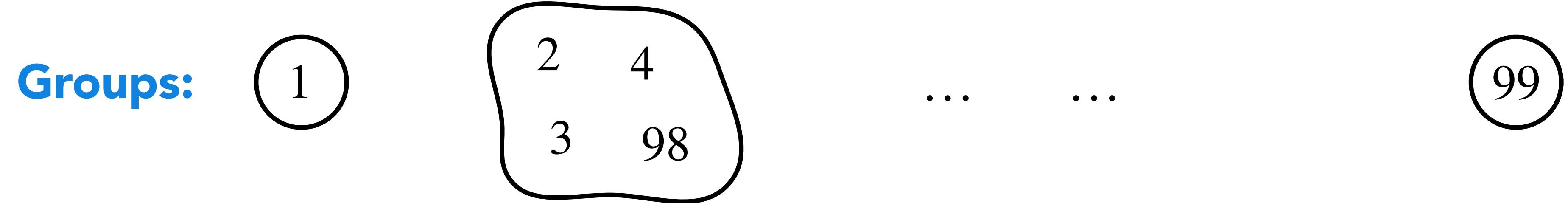
Finding Friend Groups on Facebook



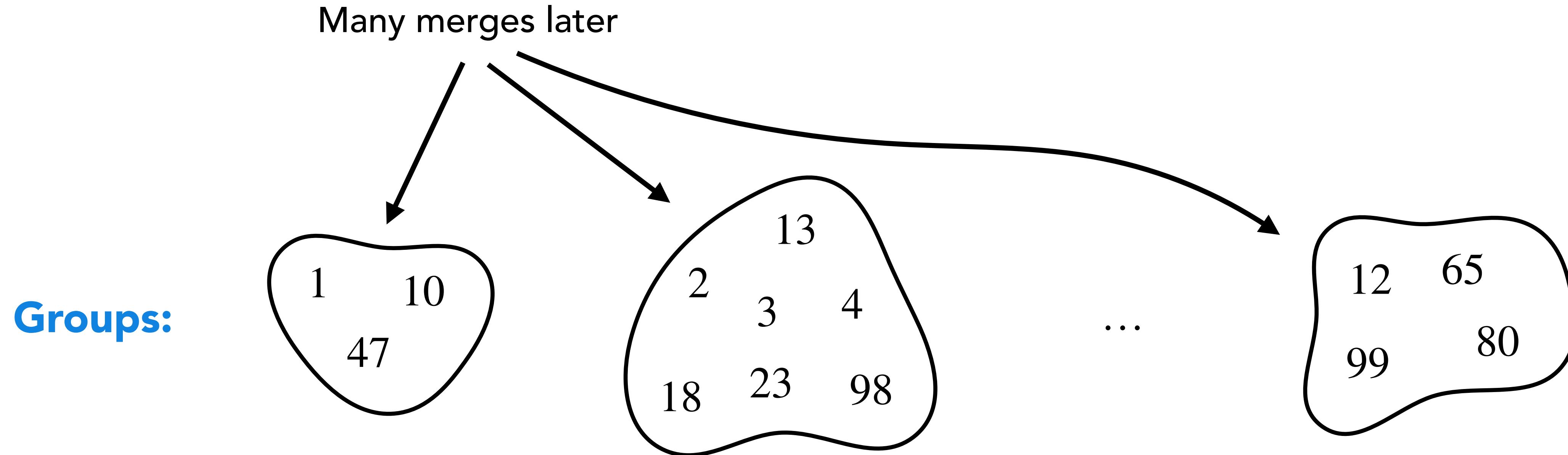
Finding Friend Groups on Facebook



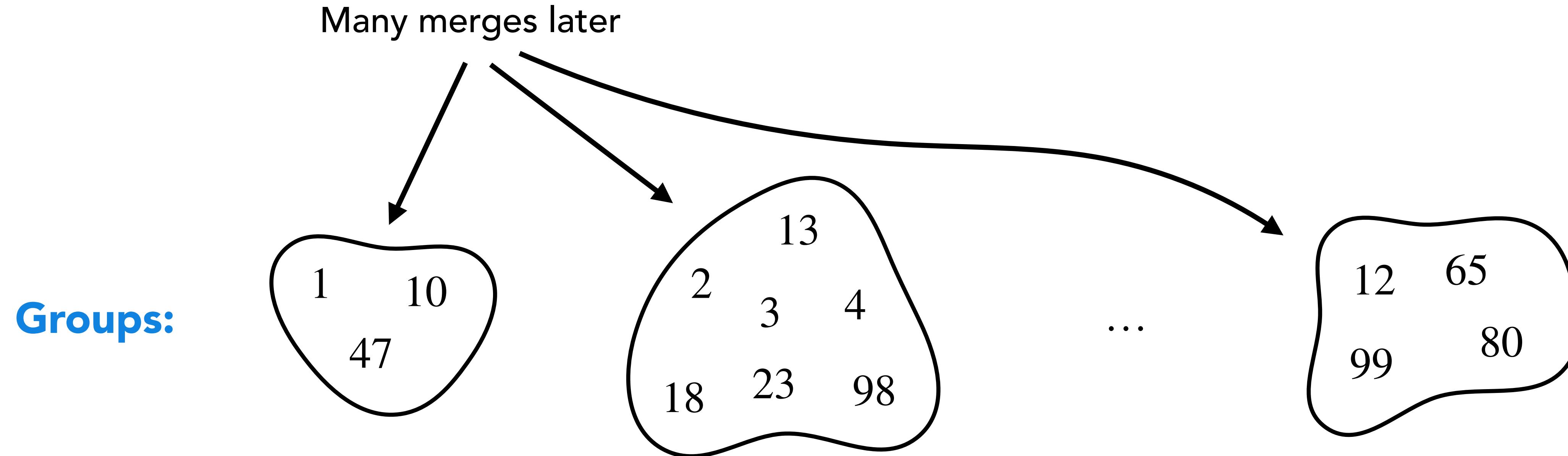
Finding Friend Groups on Facebook



Finding Friend Groups on Facebook

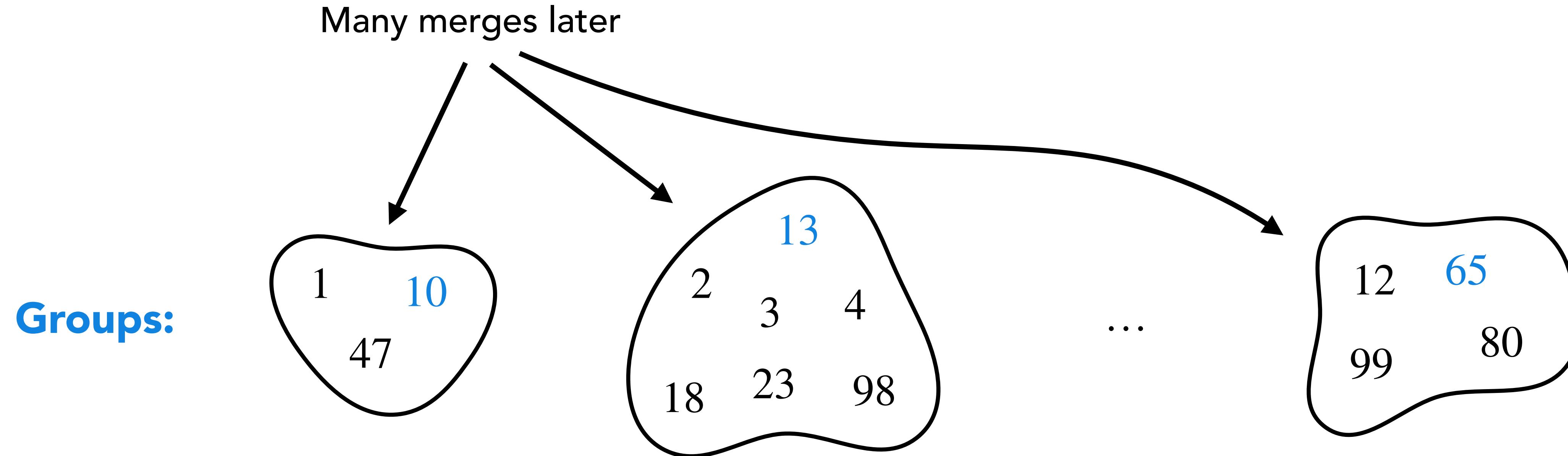


Finding Friend Groups on Facebook



There should be a way to tell to which group a user belongs.

Finding Friend Groups on Facebook

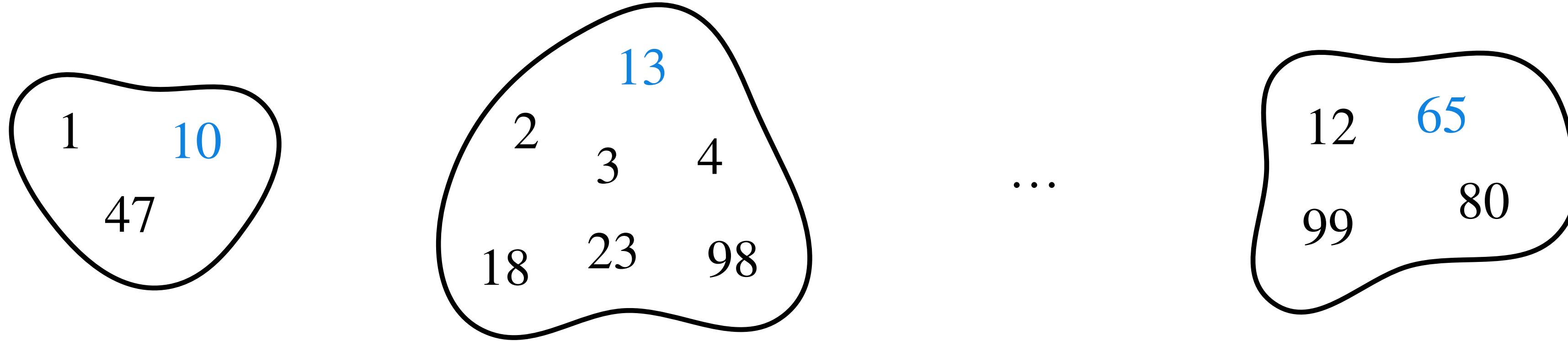


There should be a way to tell to which group a user belongs.

We achieve that by having a **representative** for every group.

Finding Friend Groups on Facebook

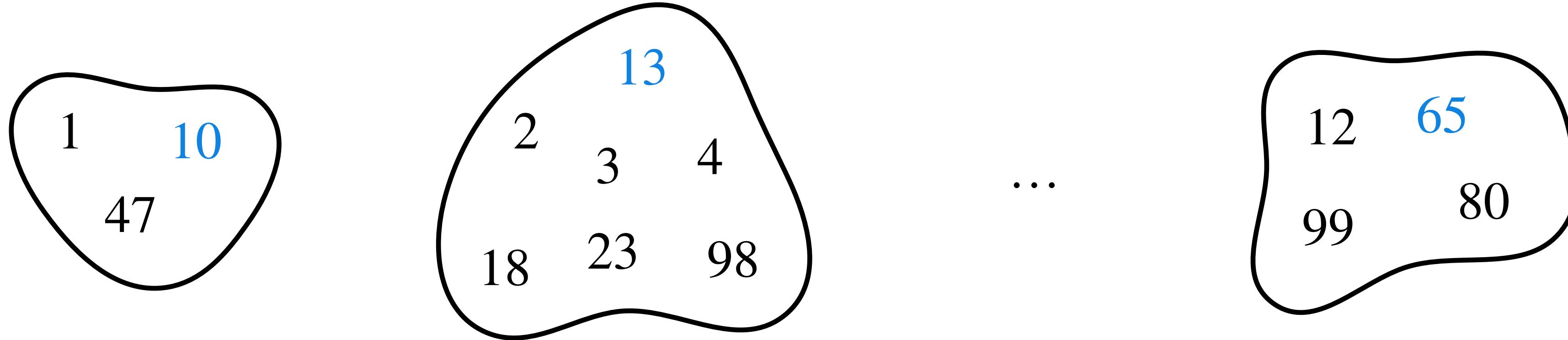
Groups:



Goal: Design a data-structure so that:

Finding Friend Groups on Facebook

Groups:

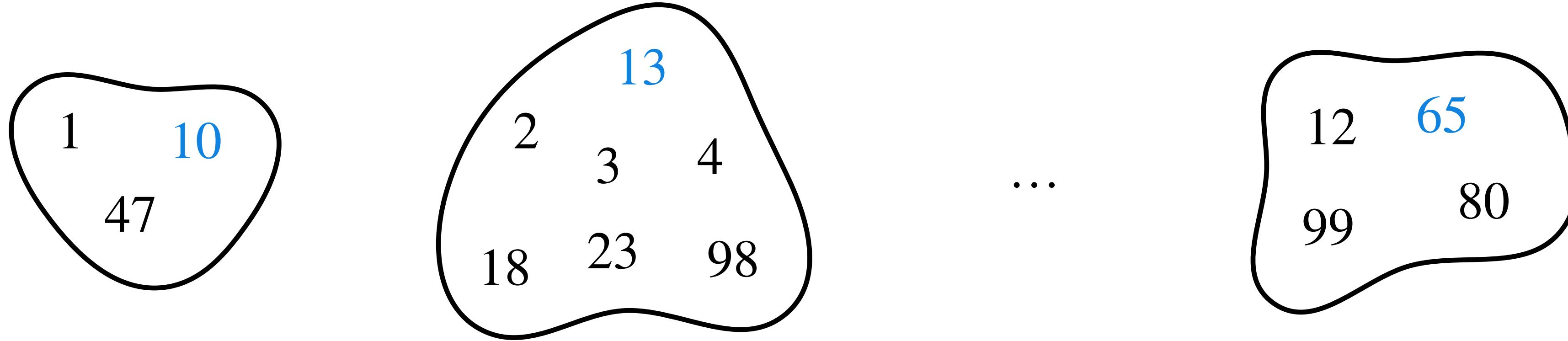


Goal: Design a data-structure so that:

- **Merging** is fast.

Finding Friend Groups on Facebook

Groups:

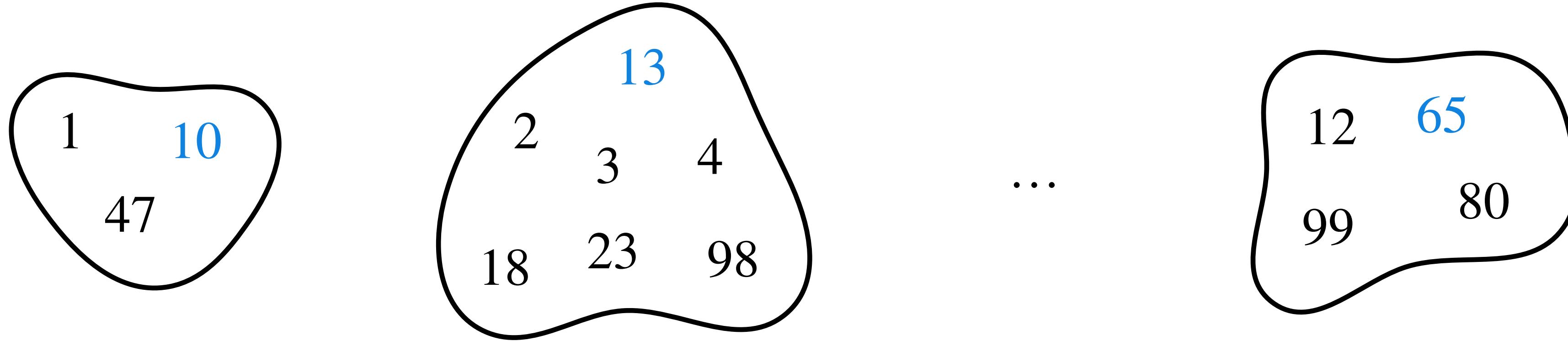


Goal: Design a data-structure so that:

- **Merging** is fast.
- **Finding representative** is fast.

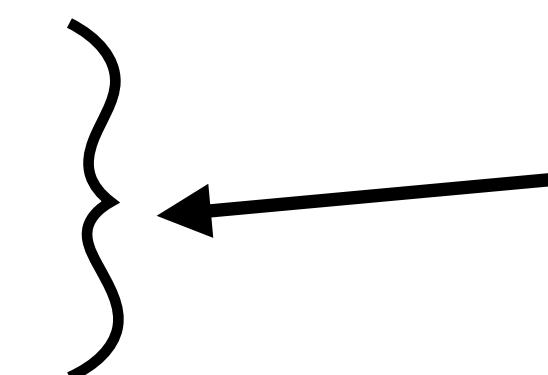
Finding Friend Groups on Facebook

Groups:



Goal: Design a data-structure so that:

- **Merging** is fast.
- **Finding representative** is fast.



Instead of optimising the cost of individual operations we will optimise a sequence of such operations.

Disjoint-set Data Structure

Disjoint-set Data Structure

Disjoint-set data structure maintains:

Disjoint-set Data Structure

Disjoint-set data structure maintains:

- A collection $\mathcal{S} = \{S_1, S_2, \dots, S_k\}$ of disjoint dynamic sets.

Disjoint-set Data Structure

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, \dots, S_k\}$ of disjoint dynamic sets.
- A **representative** for each set which is a member of the set.

Disjoint-set Data Structure

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, \dots, S_k\}$ of disjoint dynamic sets.
- A **representative** for each set which is a member of the set.

Operations of disjoint-set data structure:

Disjoint-set Data Structure

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, \dots, S_k\}$ of disjoint dynamic sets.
- A **representative** for each set which is a member of the set.

Operations of disjoint-set data structure:

- **Make-Set(x)**: Creates a new set with x as the only member. Make x its own representative.

Disjoint-set Data Structure

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, \dots, S_k\}$ of disjoint dynamic sets.
- A **representative** for each set which is a member of the set.

Operations of disjoint-set data structure:

- **Make-Set(x)**: Creates a new set with x as the only member. Make x its own representative.
- **Union(x, y)**: Adds $S_x \cup S_y$ to the collection, where S_x and S_y contain x and y , respectively.

Disjoint-set Data Structure

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, \dots, S_k\}$ of disjoint dynamic sets.
- A **representative** for each set which is a member of the set.

Operations of disjoint-set data structure:

- **Make-Set(x)**: Creates a new set with x as the only member. Make x its own representative.
- **Union(x, y)**: Adds $S_x \cup S_y$ to the collection, where S_x and S_y contain x and y , respectively.
Choose a representative for $S_x \cup S_y$.

Disjoint-set Data Structure

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, \dots, S_k\}$ of disjoint dynamic sets.
- A **representative** for each set which is a member of the set.

Operations of disjoint-set data structure:

- **Make-Set(x)**: Creates a new set with x as the only member. Make x its own representative.
- **Union(x, y)**: Adds $S_x \cup S_y$ to the collection, where S_x and S_y contain x and y , respectively.
Choose a representative for $S_x \cup S_y$. Destroys S_x and S_y .

Disjoint-set Data Structure

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, \dots, S_k\}$ of disjoint dynamic sets.
- A **representative** for each set which is a member of the set.

Operations of disjoint-set data structure:

- **Make-Set(x)**: Creates a new set with x as the only member. Make x its own representative.
- **Union(x, y)**: Adds $S_x \cup S_y$ to the collection, where S_x and S_y contain x and y , respectively.
Choose a representative for $S_x \cup S_y$. Destroys S_x and S_y .
- **Find-Set(x)**: Gives the **representative** of the unique set that contains x .

Applications of Disjoint-set Data Structure

Applications of Disjoint-set Data Structure

Disjoint-set data structure is useful in:

Applications of Disjoint-set Data Structure

Disjoint-set data structure is useful in:

- Finding friend groups on social networks.

Applications of Disjoint-set Data Structure

Disjoint-set data structure is useful in:

- Finding friend groups on social networks.
- Finding connected components in graphs.

Applications of Disjoint-set Data Structure

Disjoint-set data structure is useful in:

- Finding friend groups on social networks.
- Finding connected components in graphs.
- Kruskal's algorithms to find minimum spanning tree.

Applications of Disjoint-set Data Structure

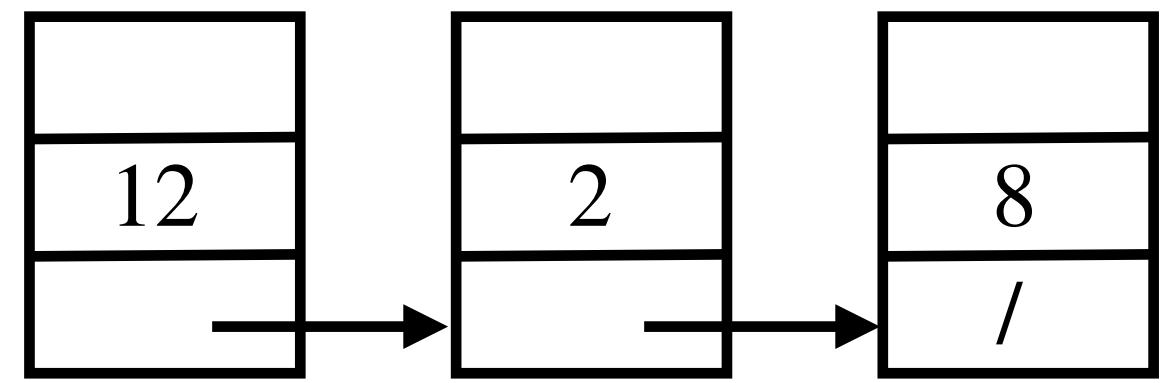
Disjoint-set data structure is useful in:

- Finding friend groups on social networks.
- Finding connected components in graphs.
- Kruskal's algorithms to find minimum spanning tree.
- Finding systems on the same network, etc.

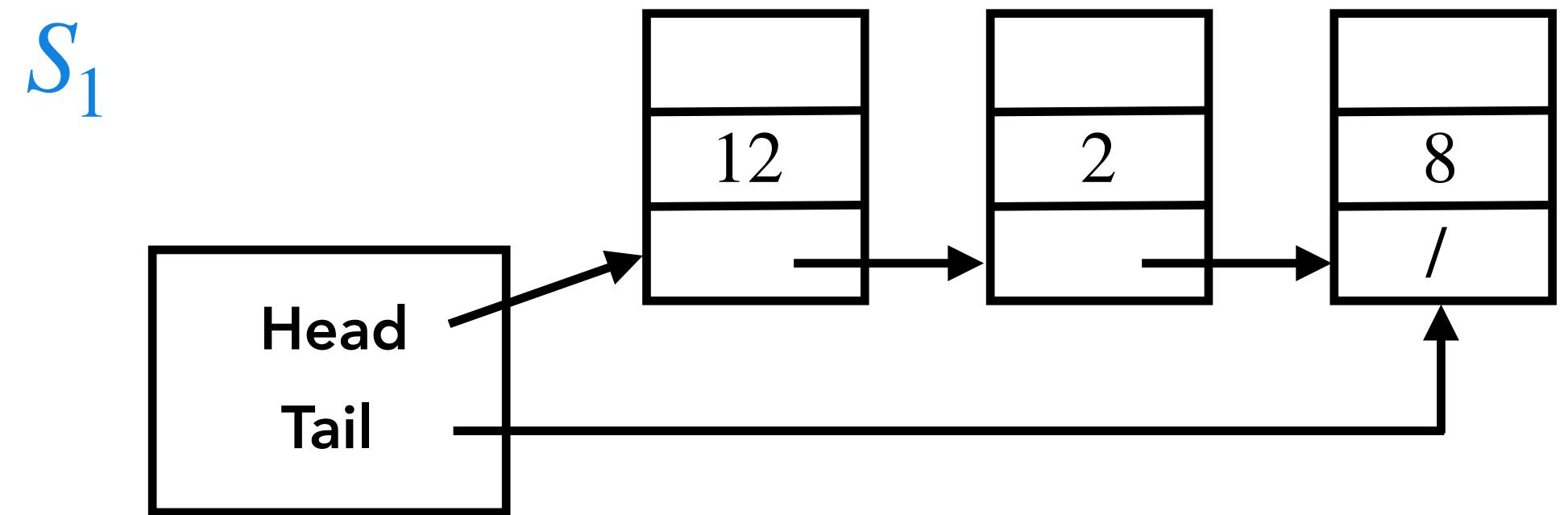
Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

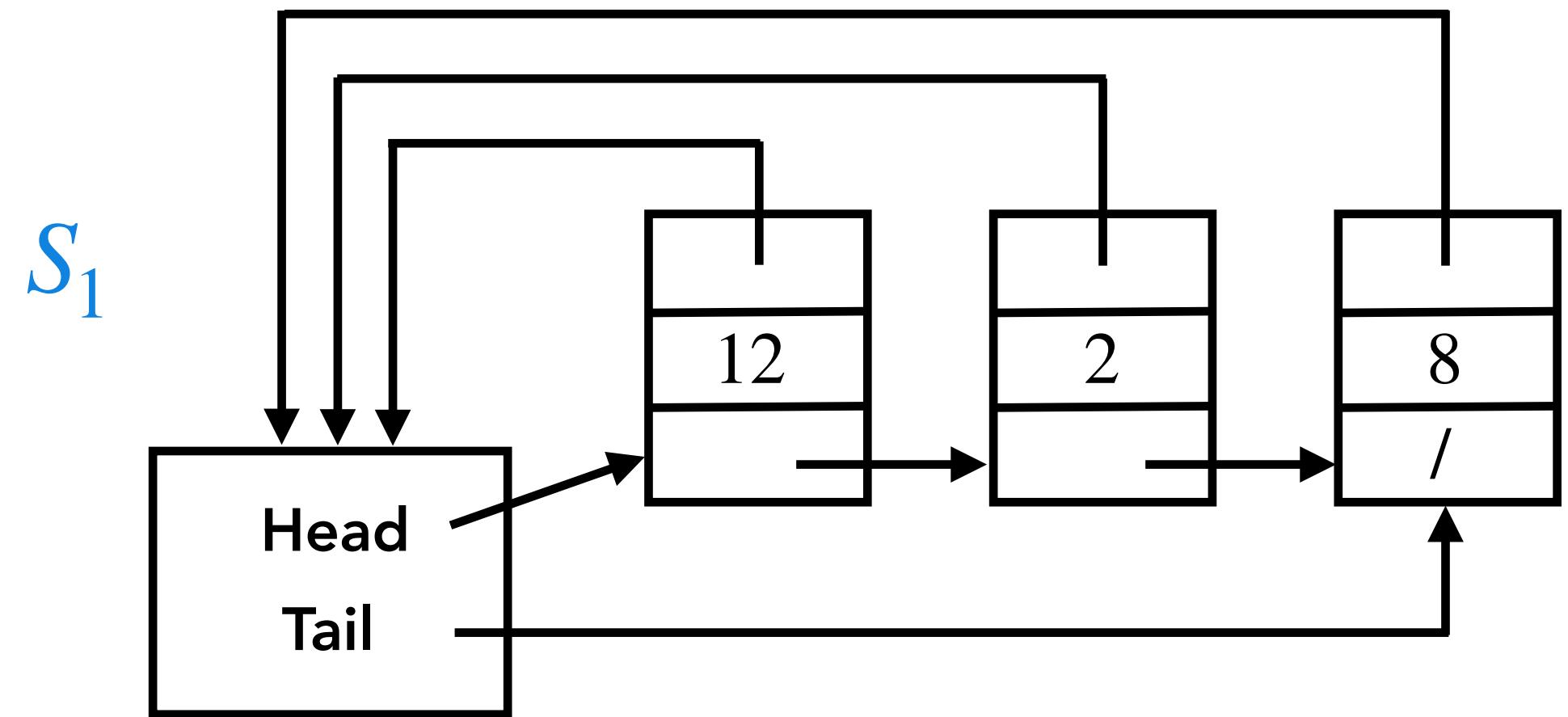
S_1



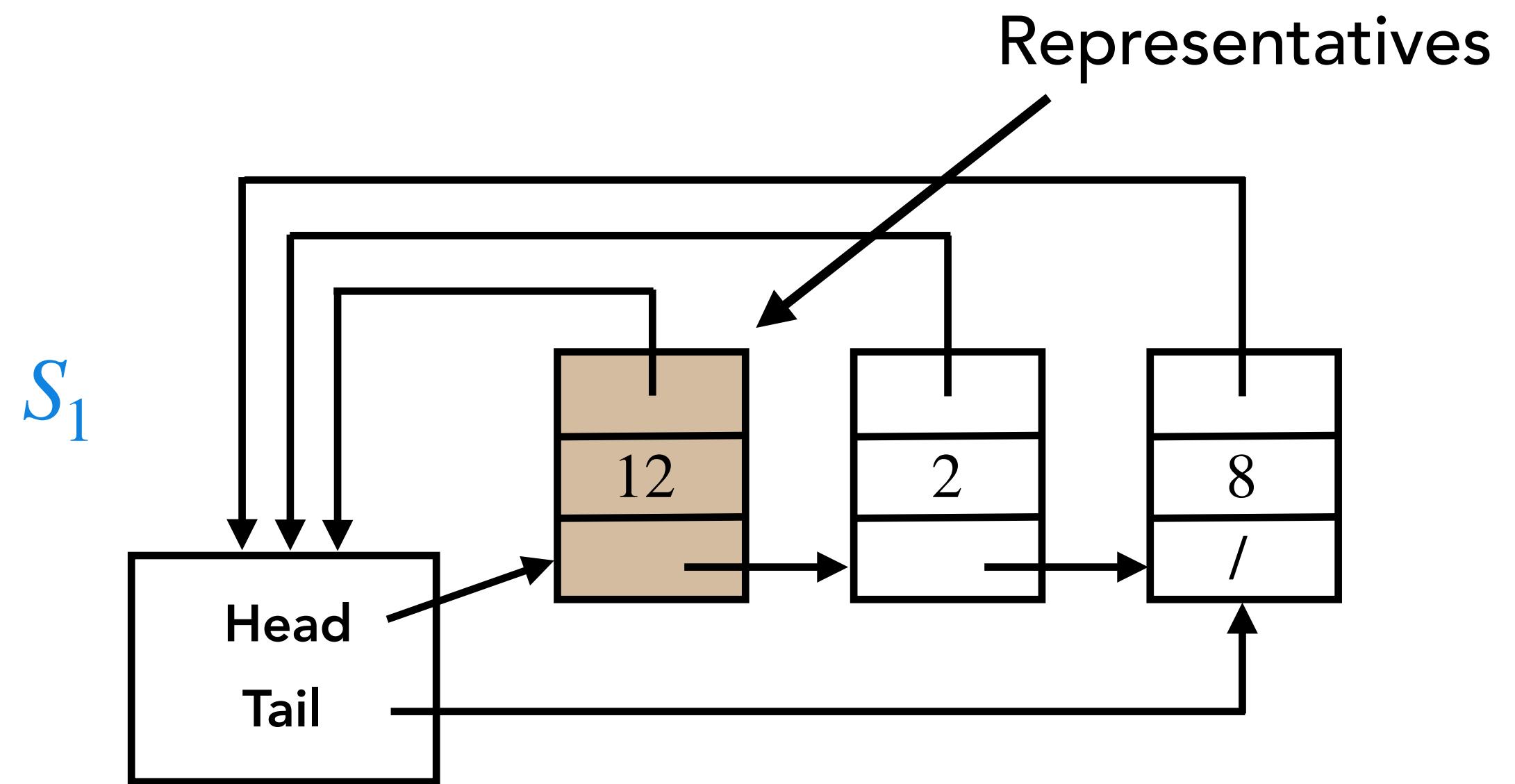
Disjoint-Sets as Linked Lists



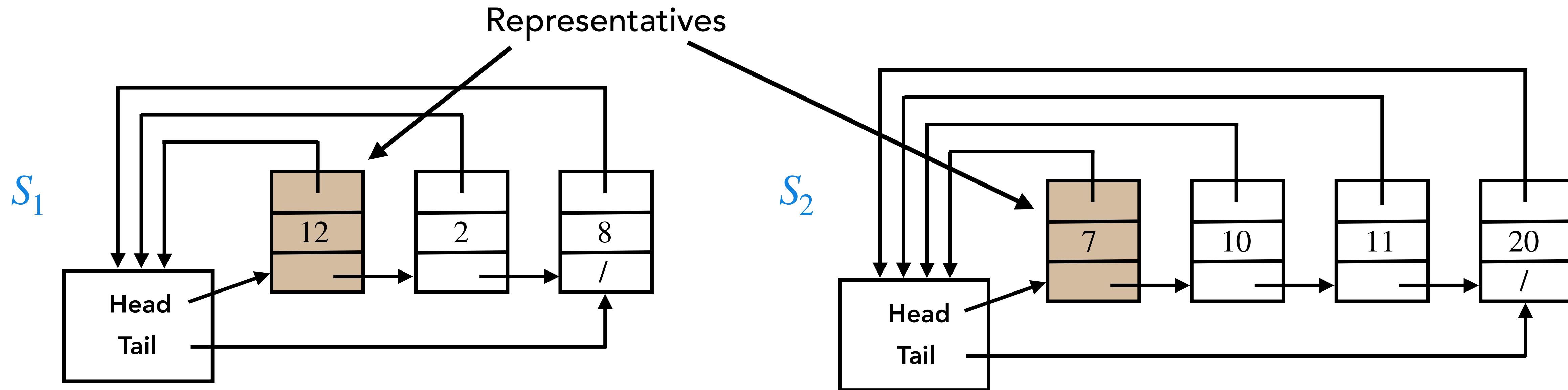
Disjoint-Sets as Linked Lists



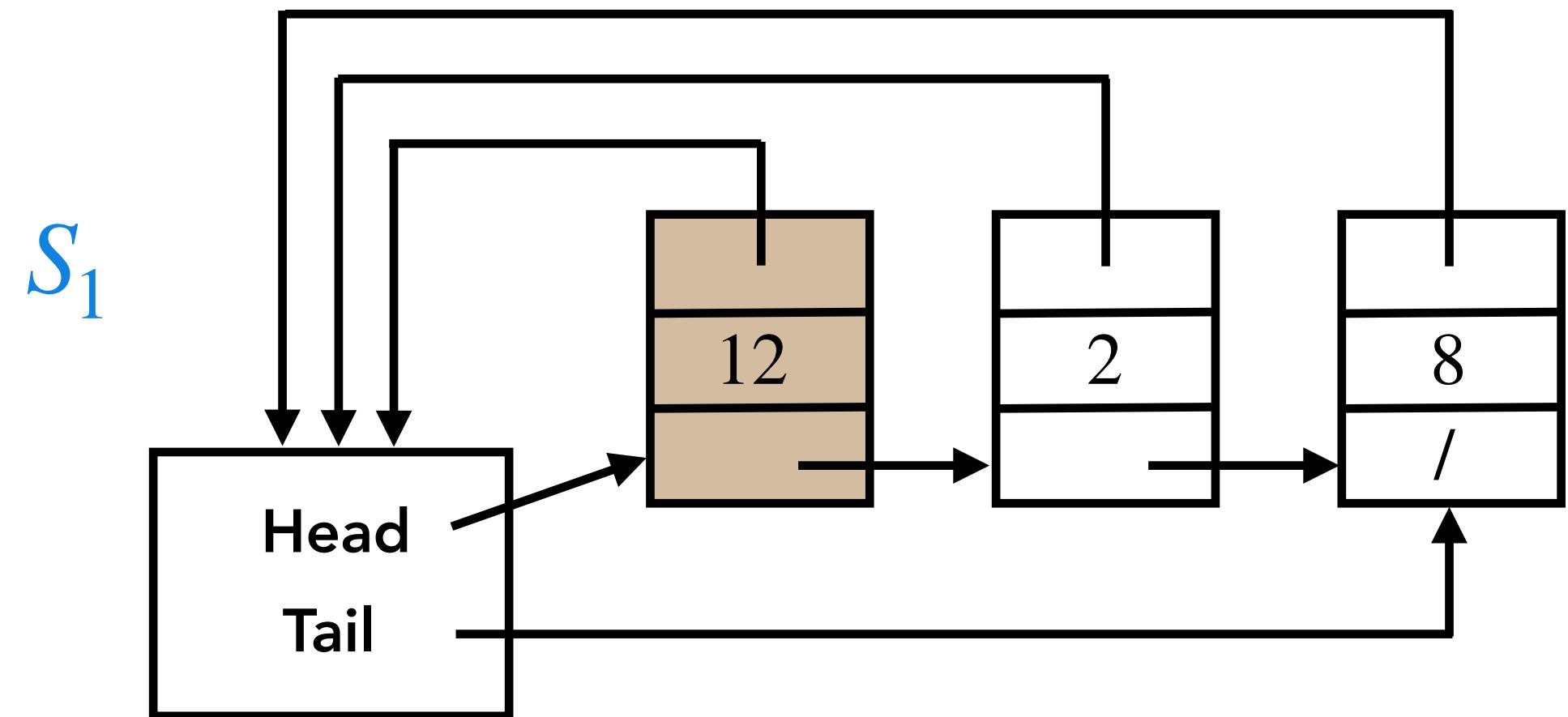
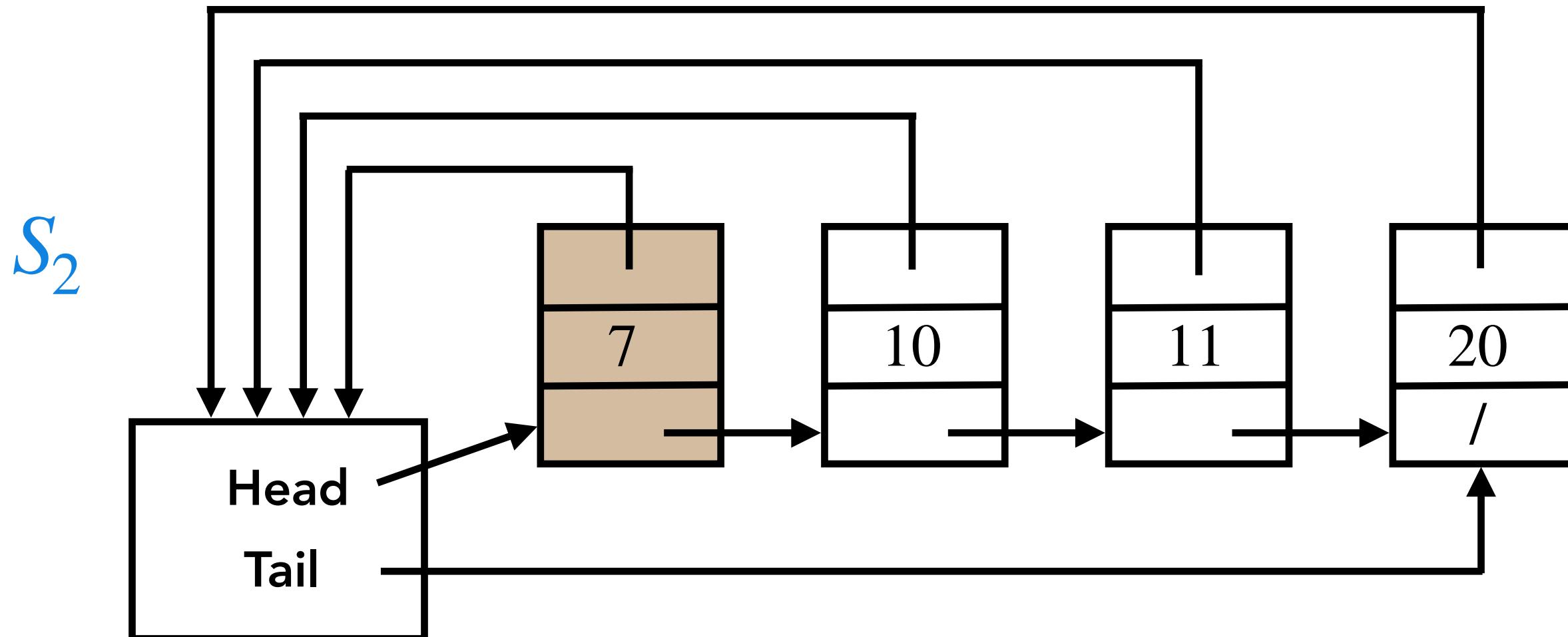
Disjoint-Sets as Linked Lists



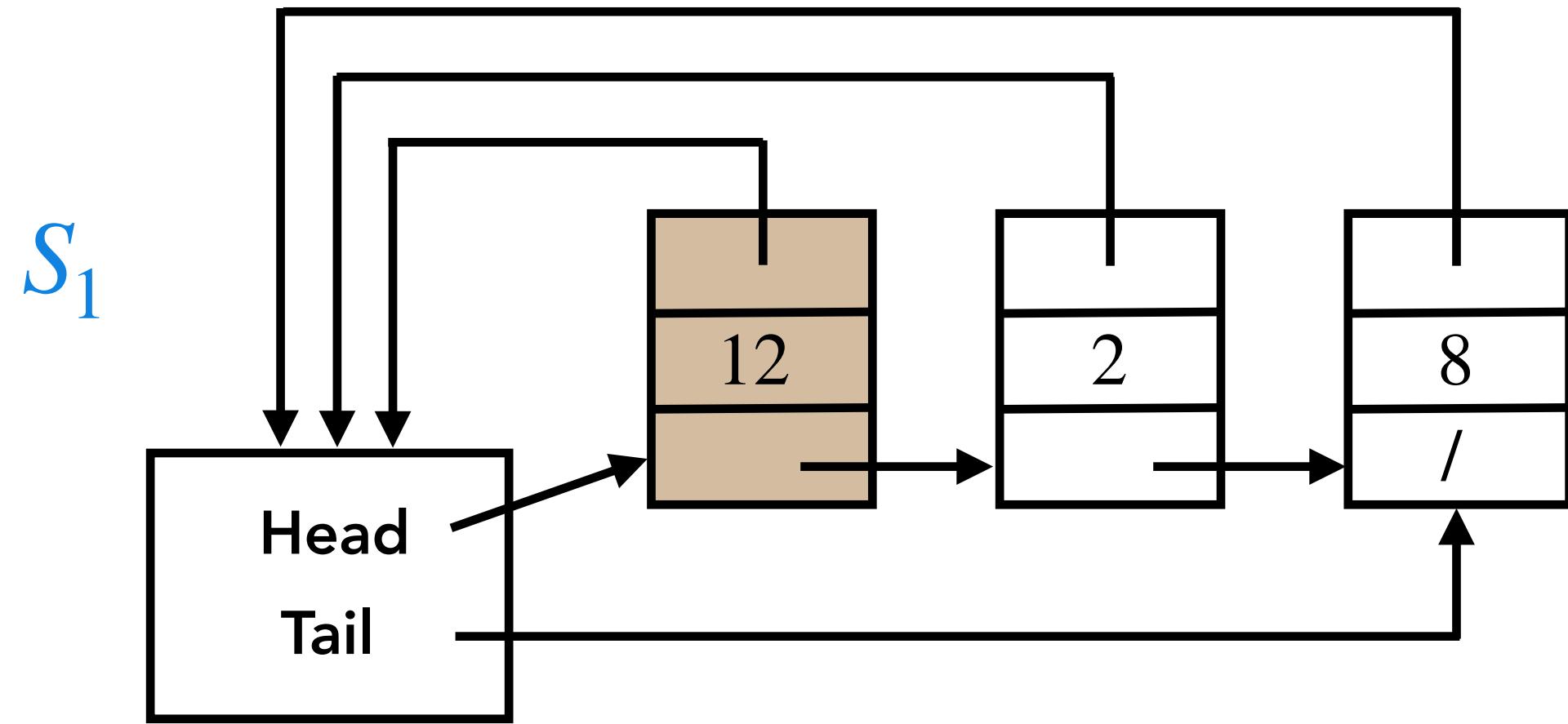
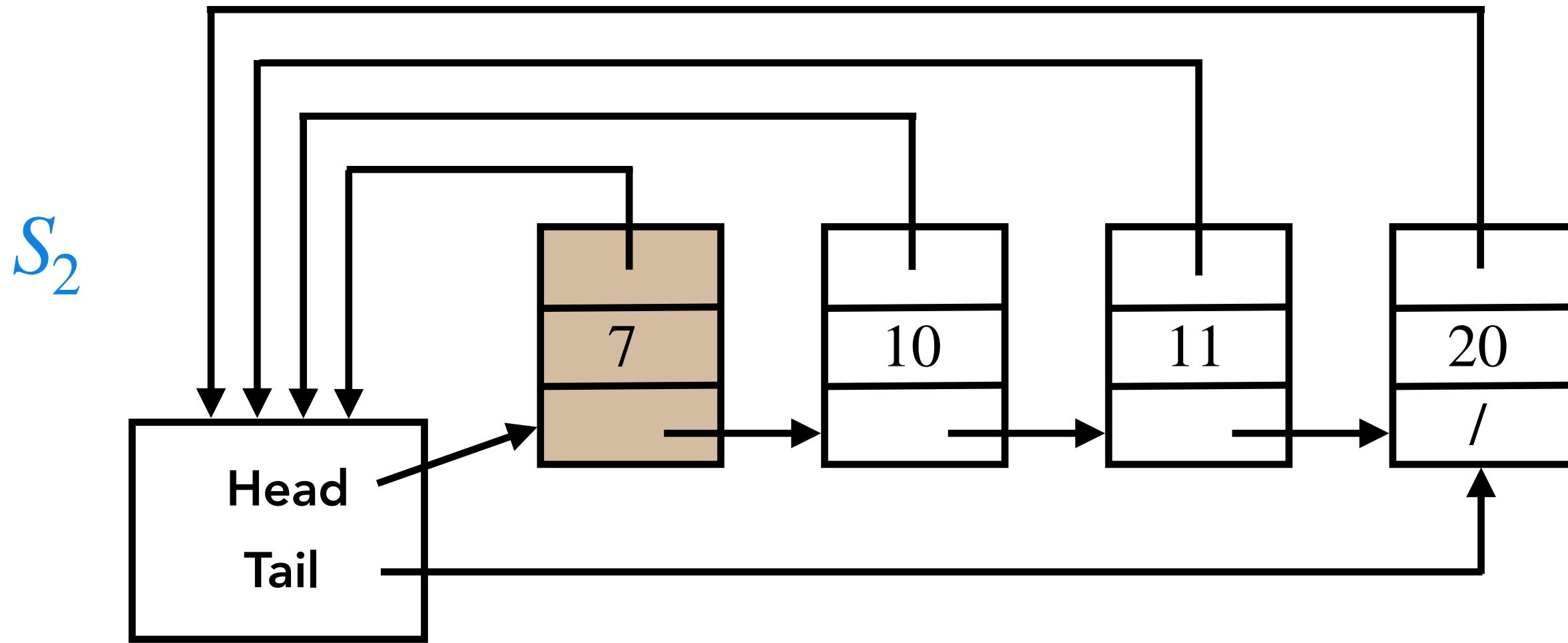
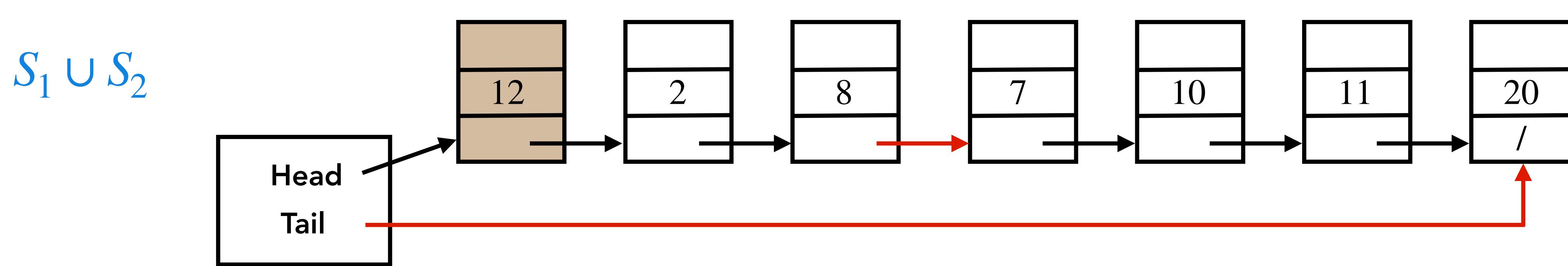
Disjoint-Sets as Linked Lists



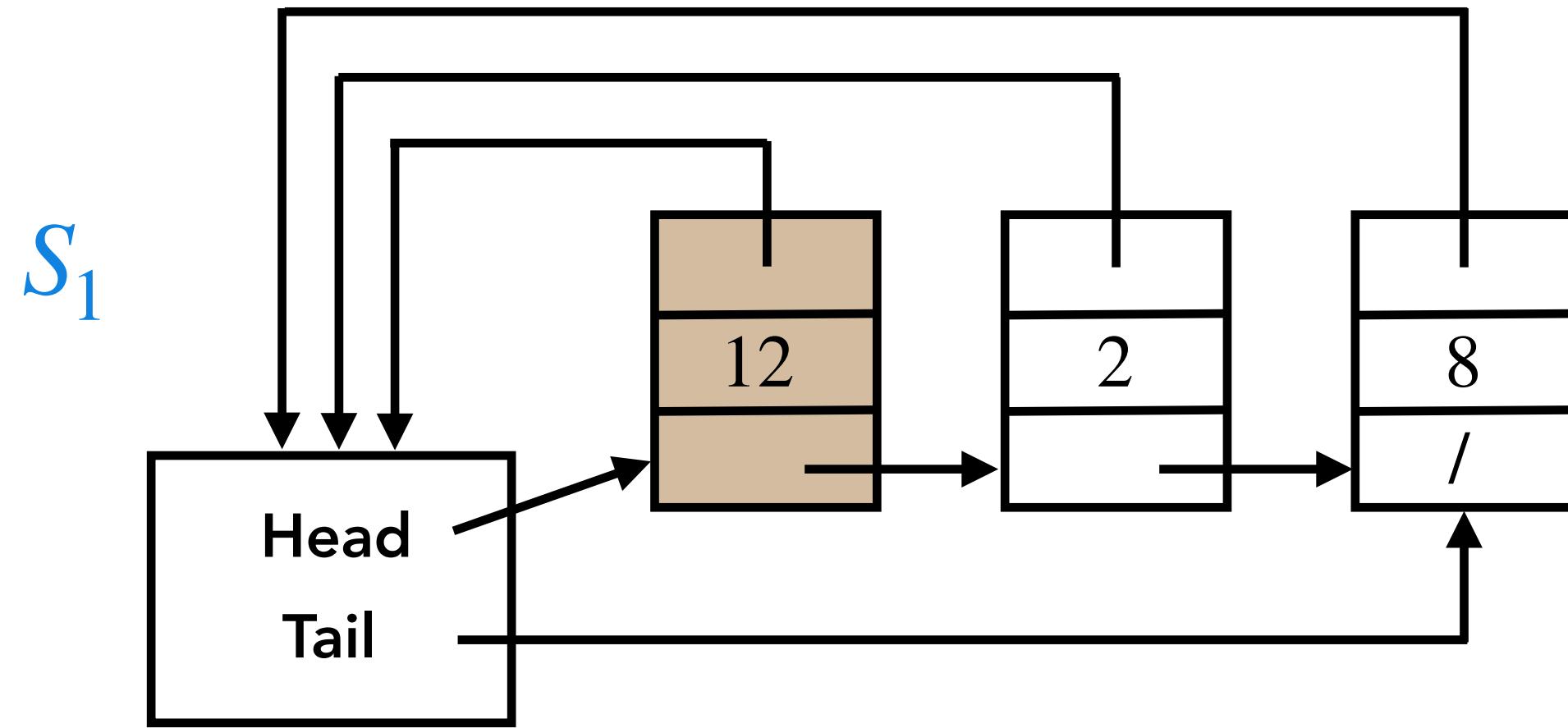
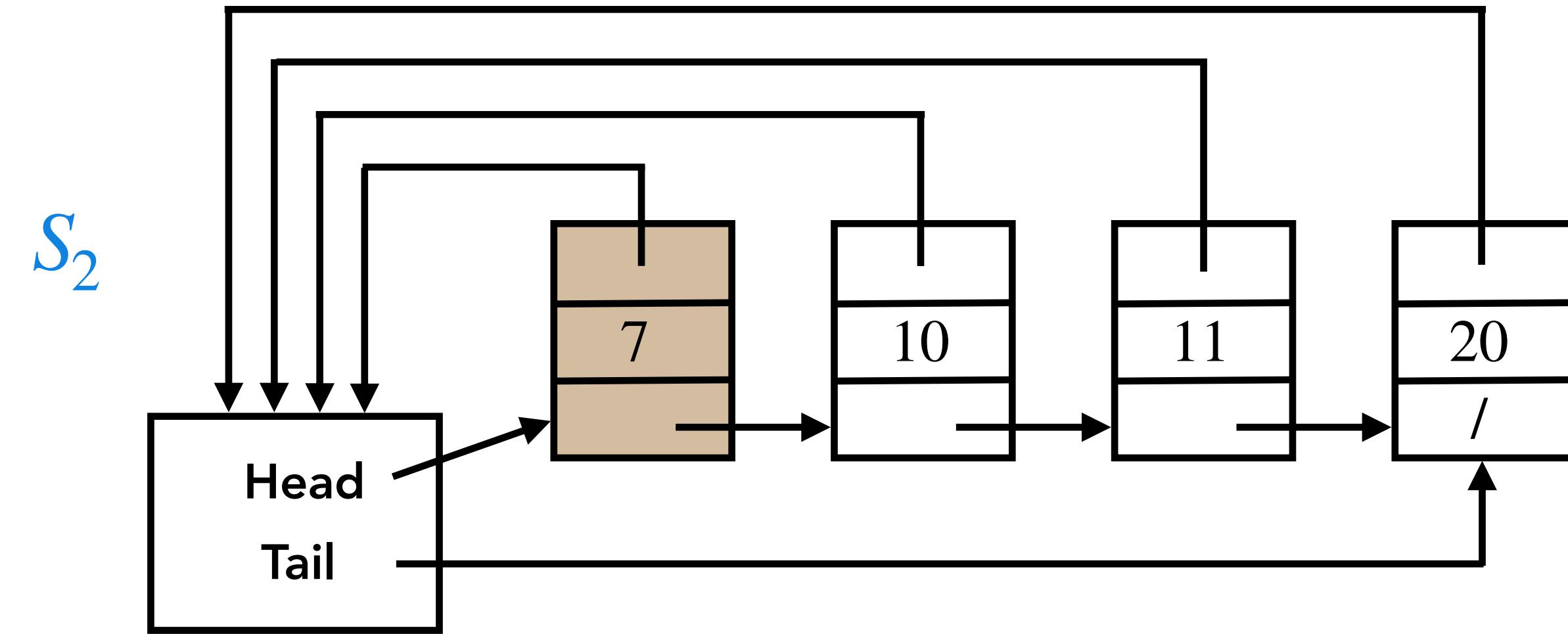
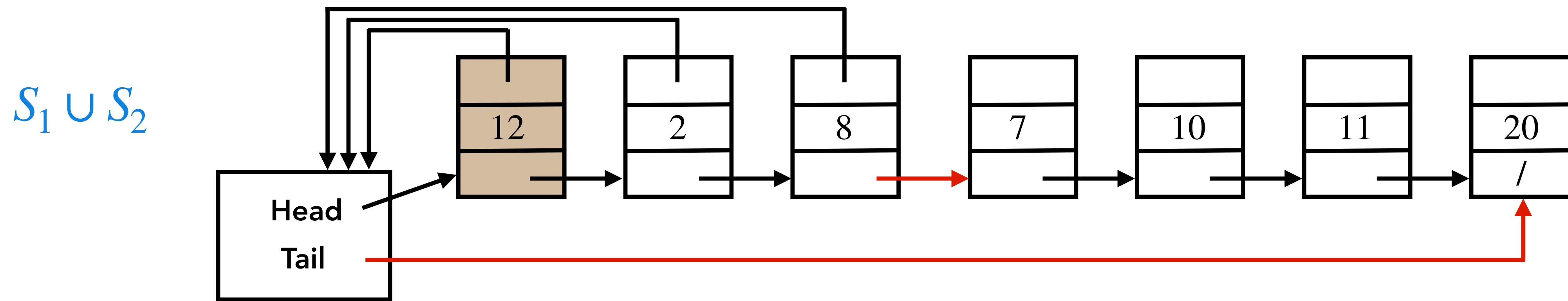
Disjoint-Sets as Linked Lists



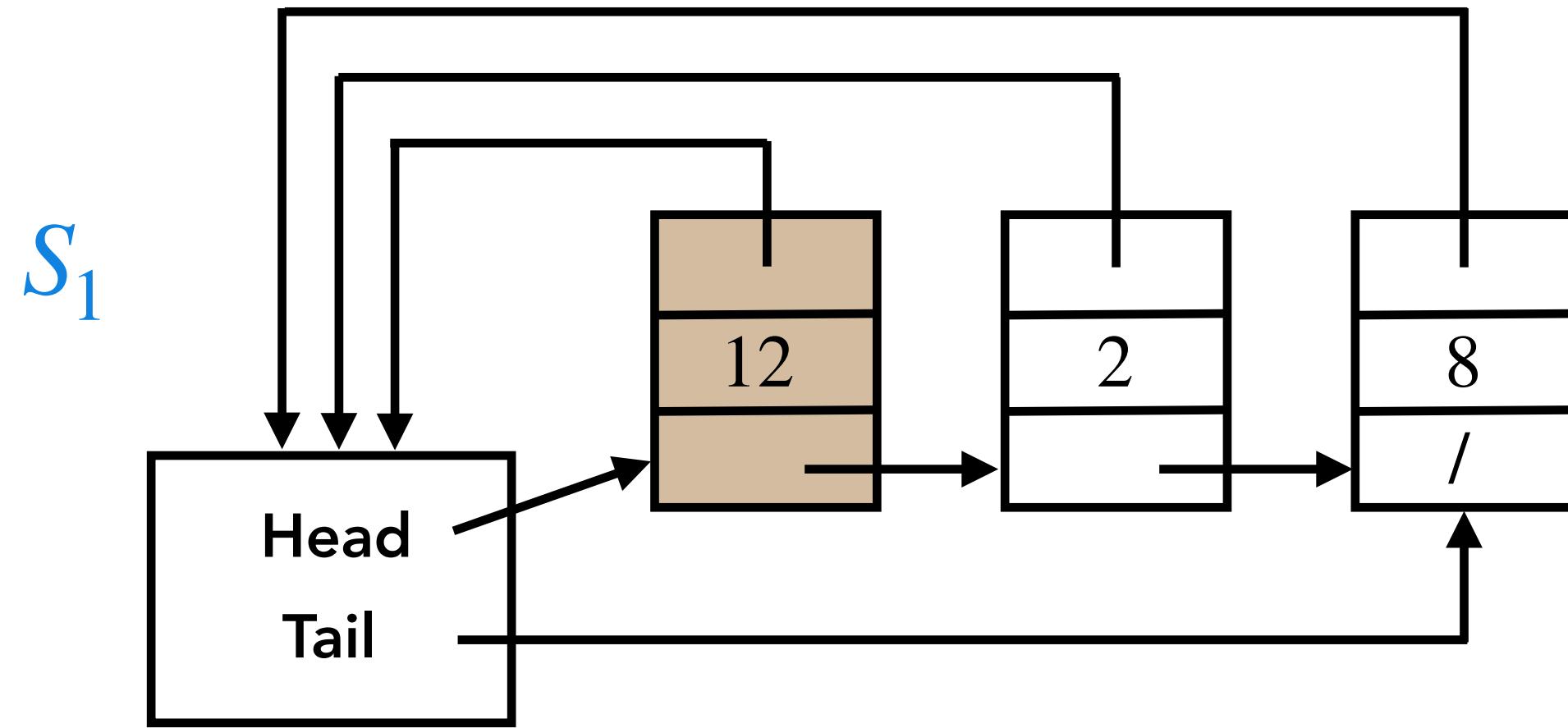
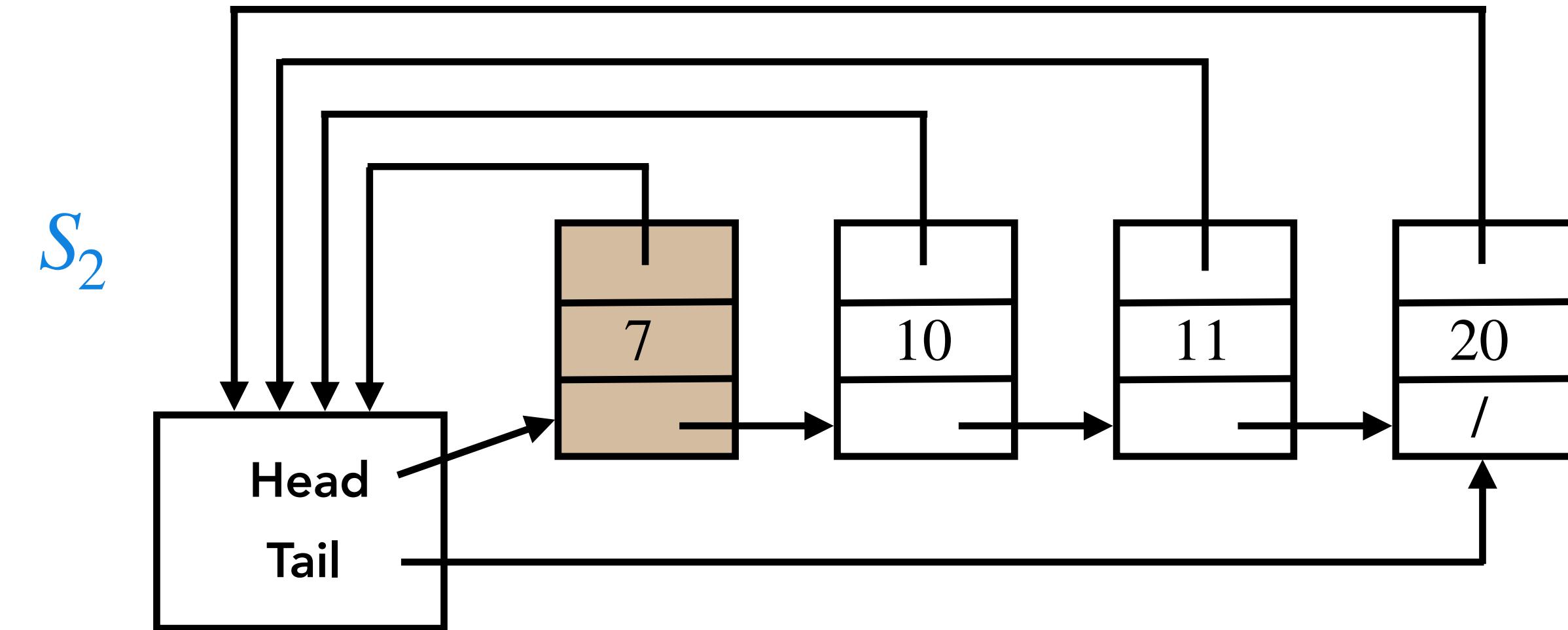
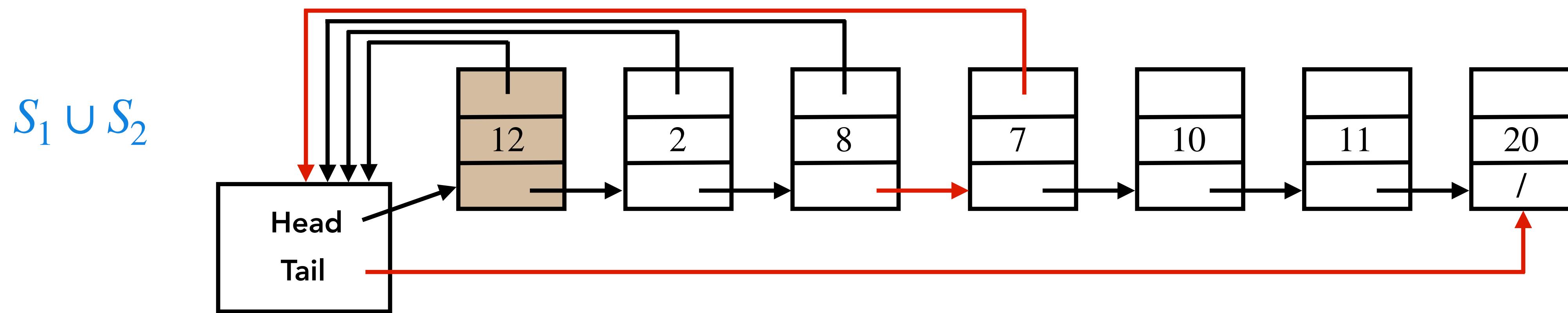
Disjoint-Sets as Linked Lists



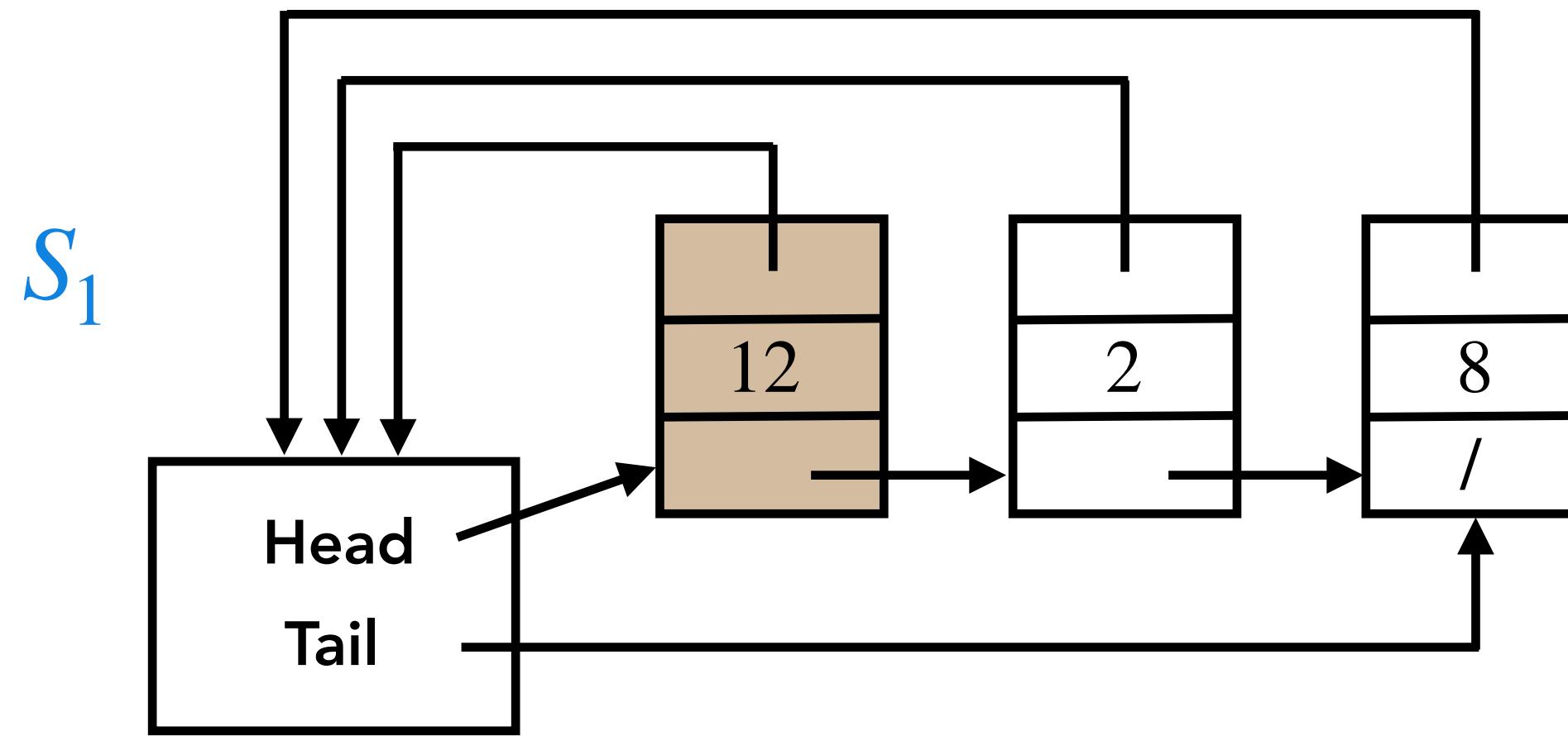
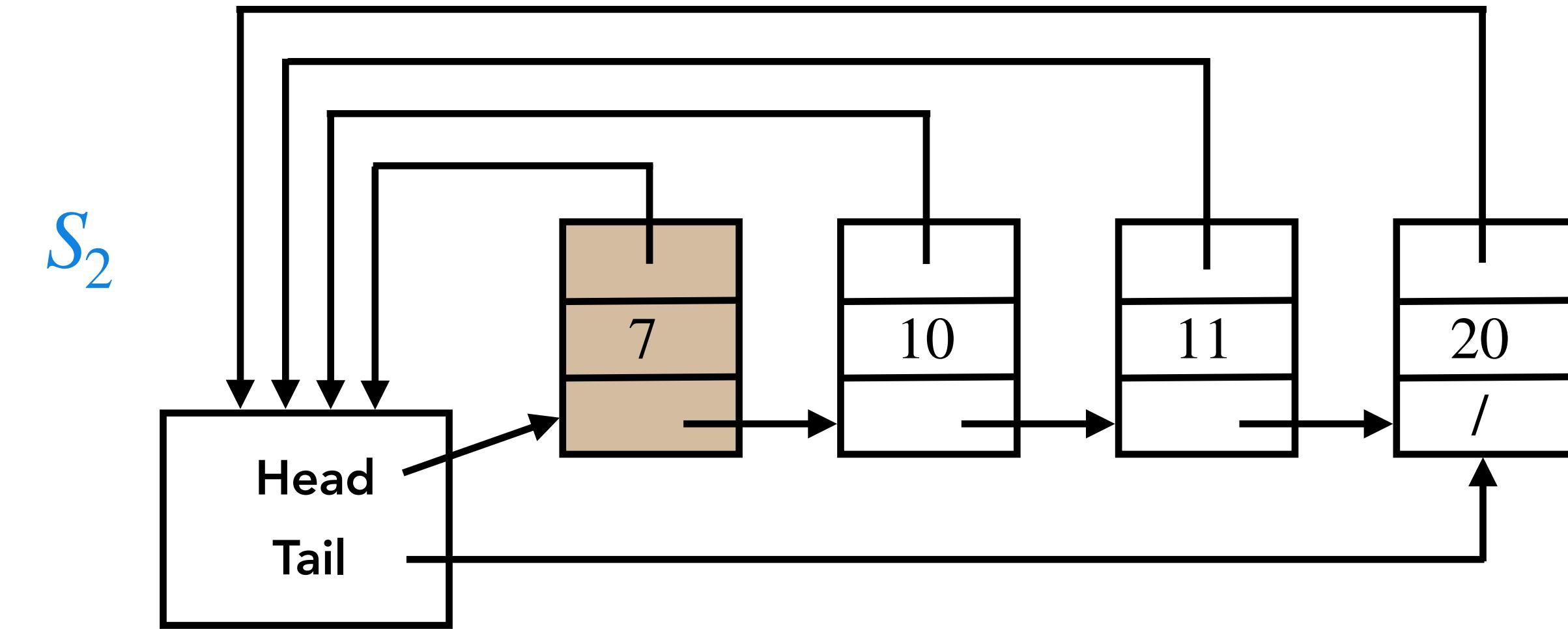
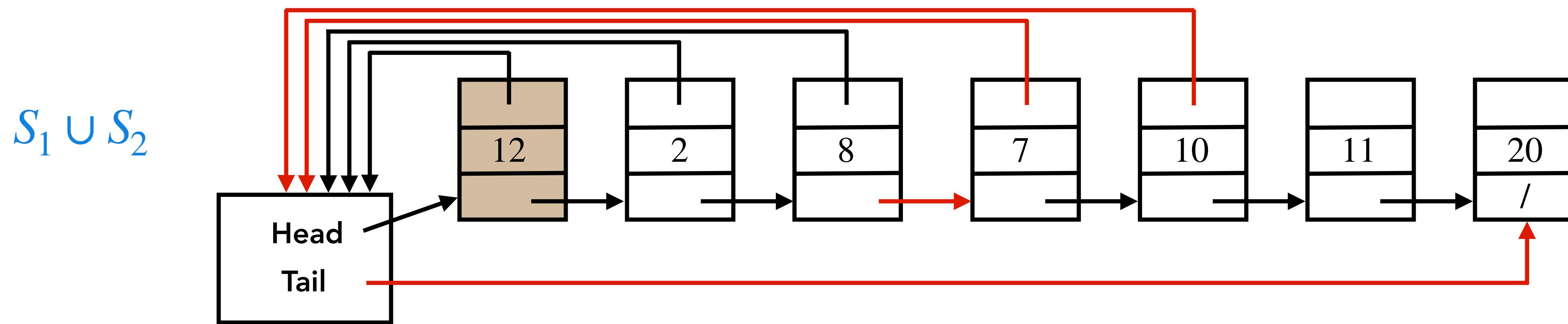
Disjoint-Sets as Linked Lists



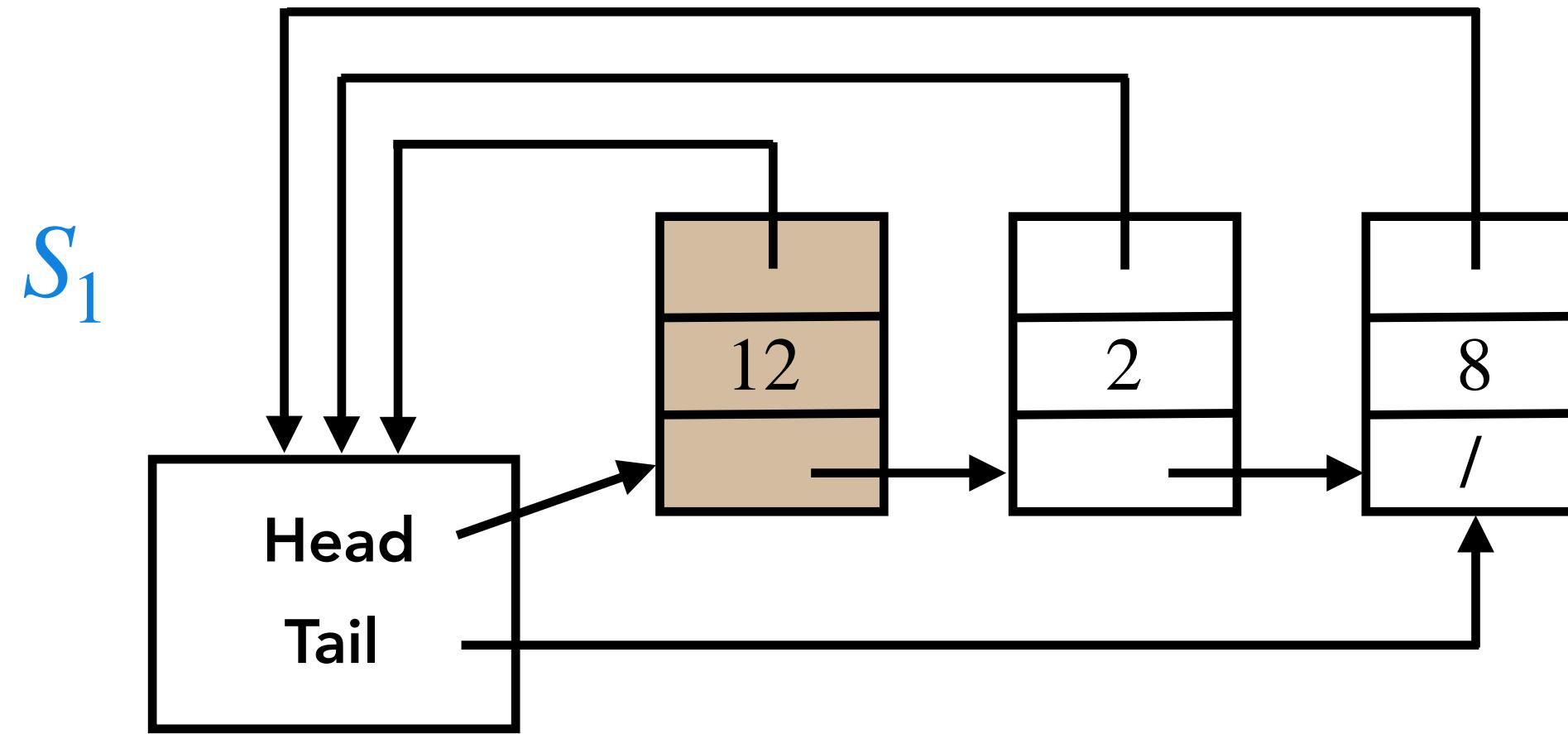
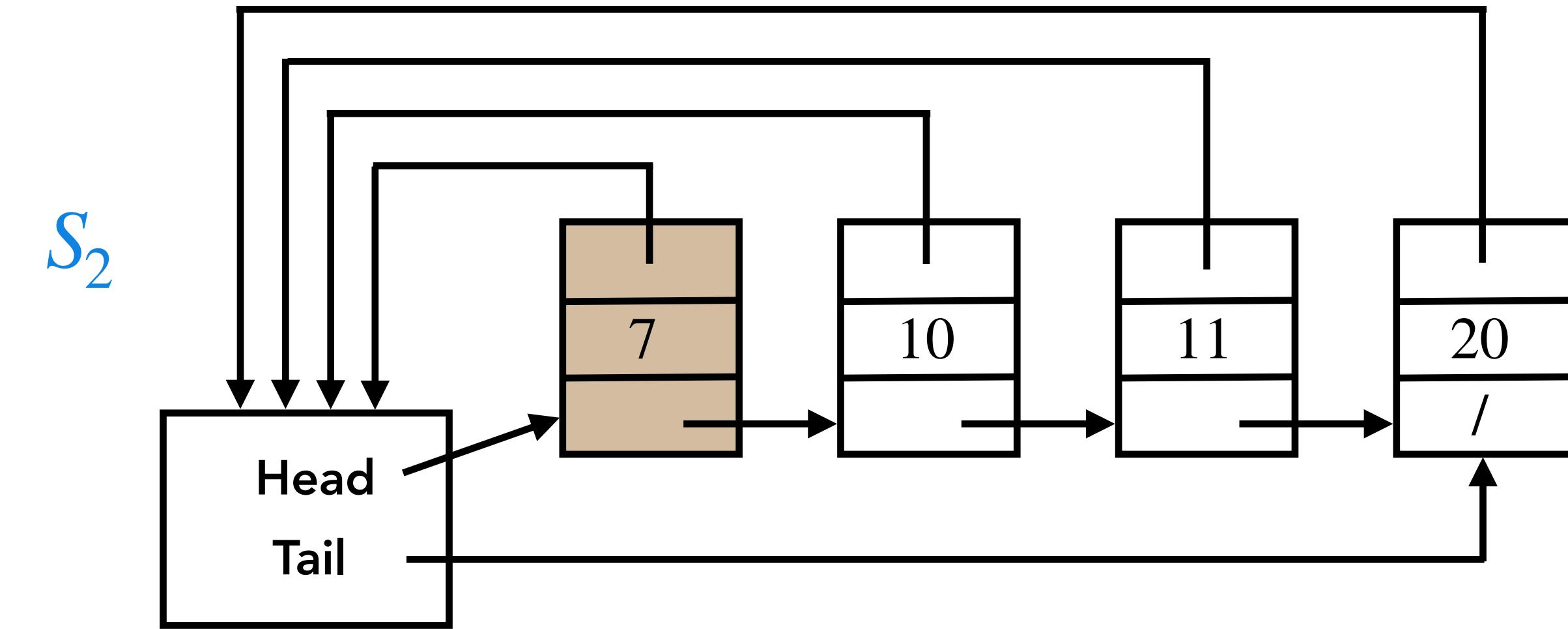
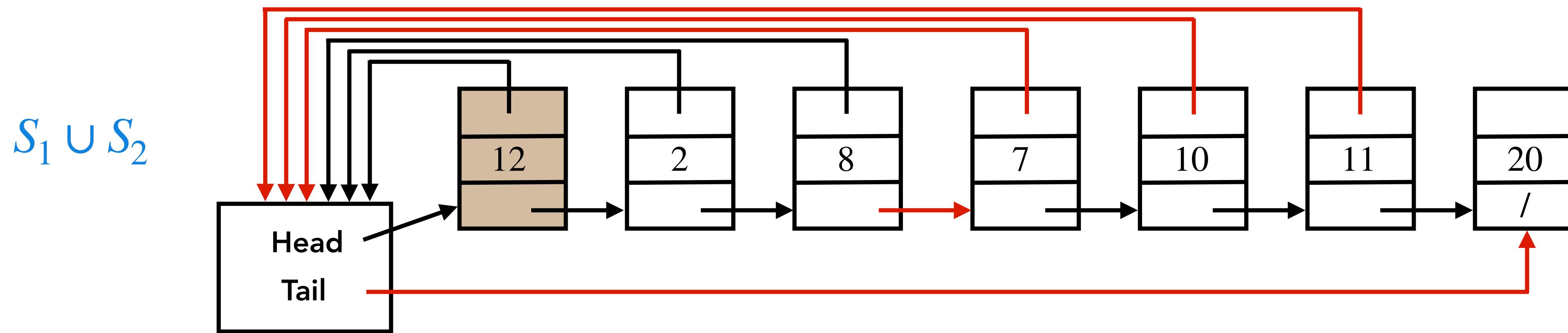
Disjoint-Sets as Linked Lists



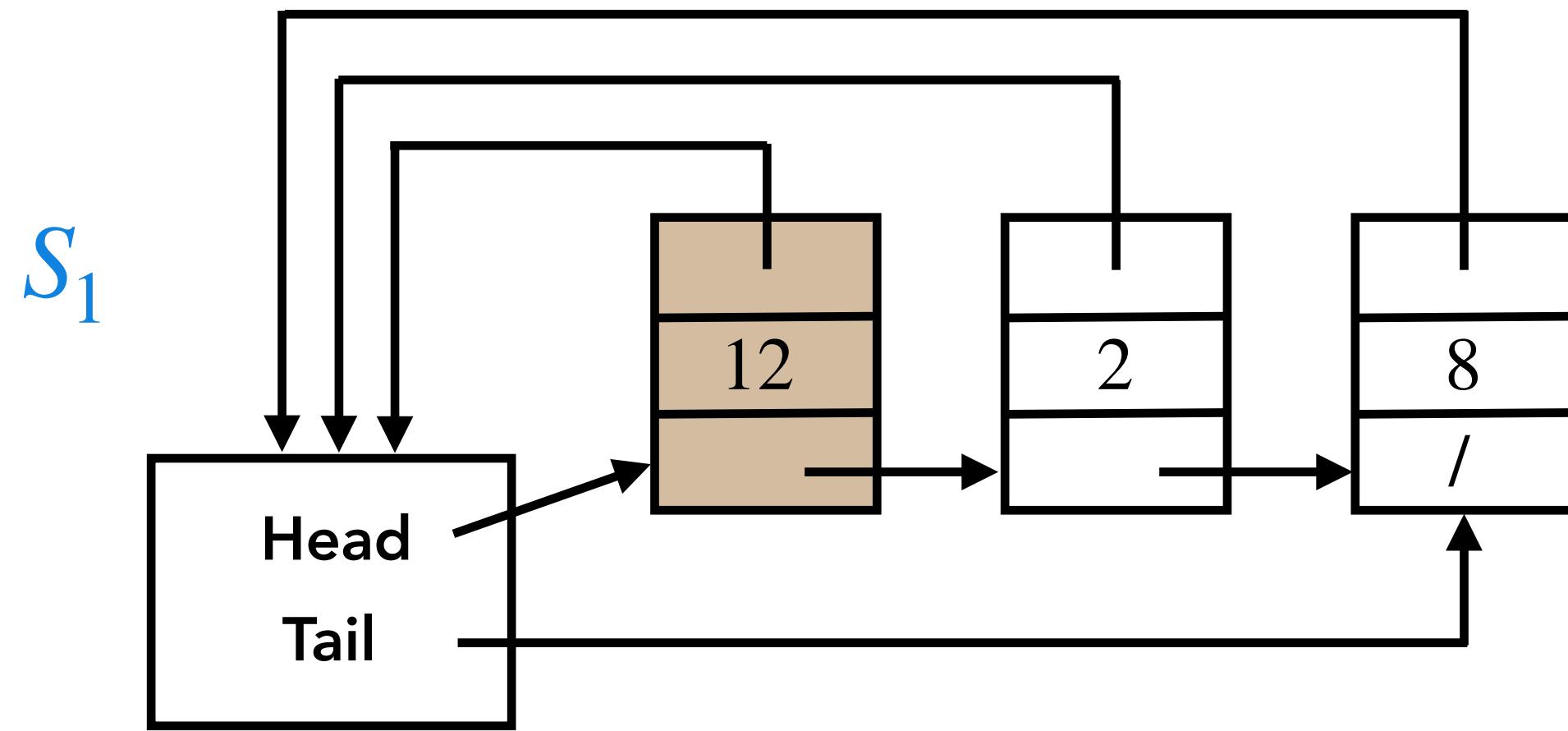
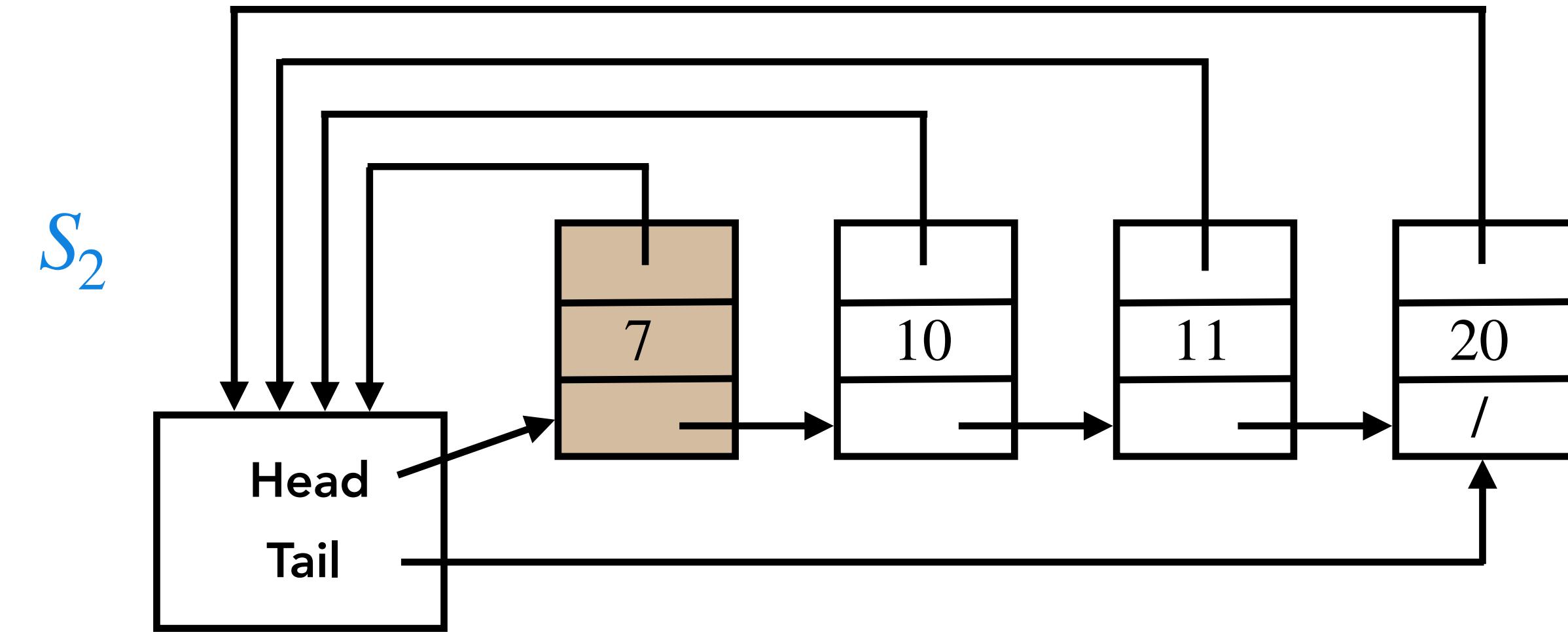
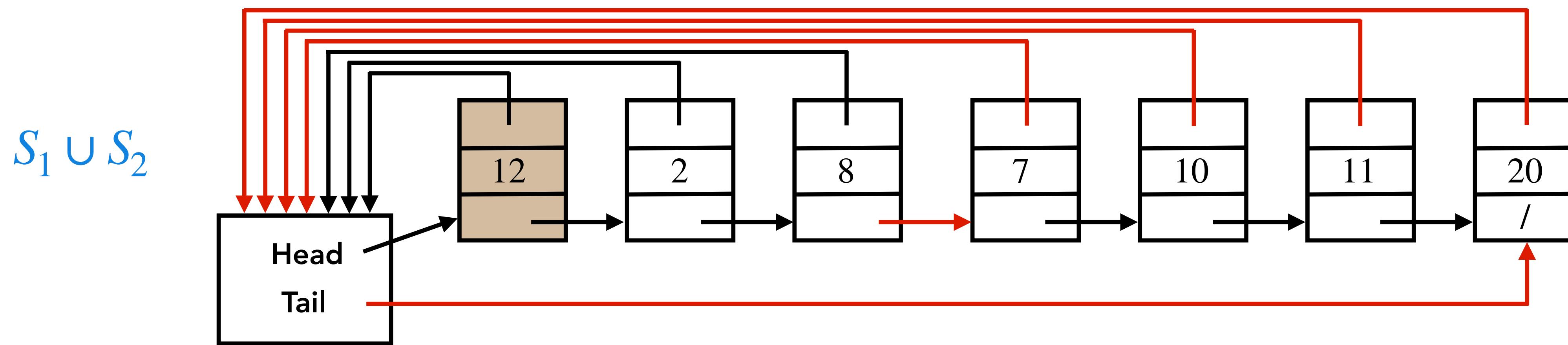
Disjoint-Sets as Linked Lists



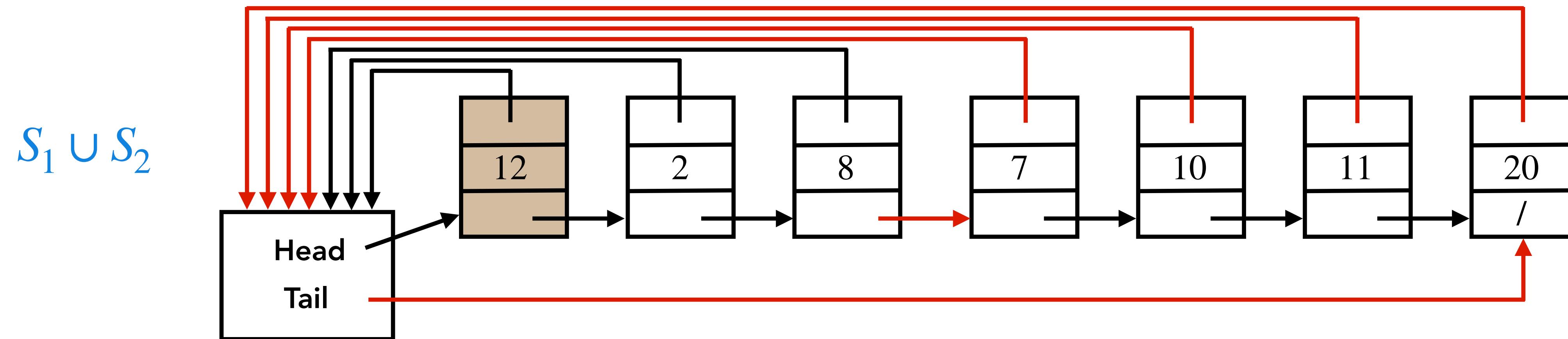
Disjoint-Sets as Linked Lists



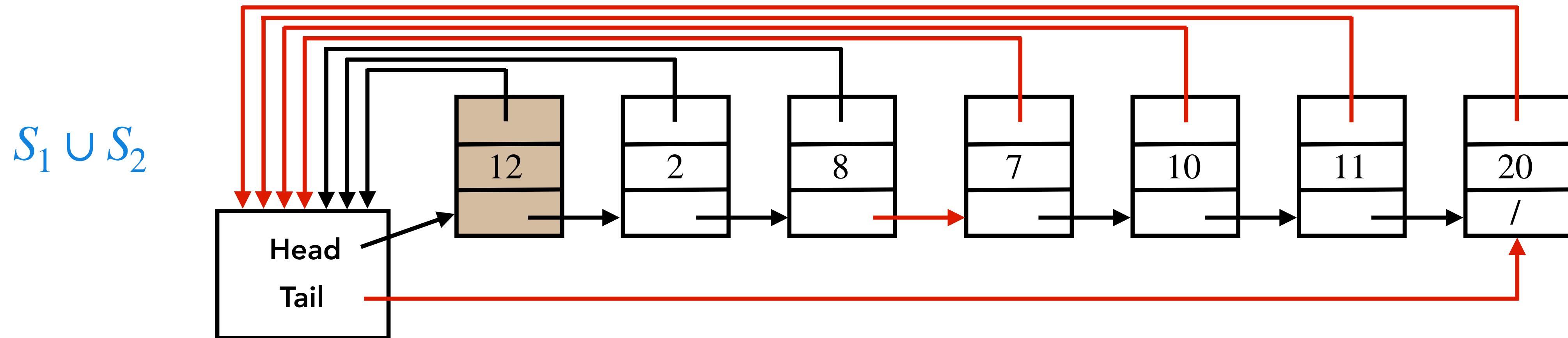
Disjoint-Sets as Linked Lists



Disjoint-Sets as Linked Lists

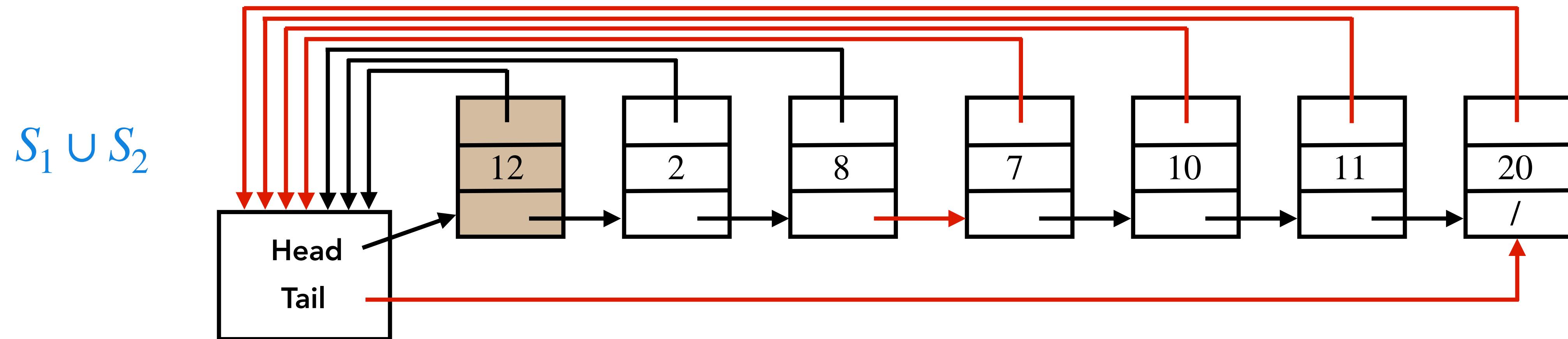


Disjoint-Sets as Linked Lists



Heuristic: Appending the shorter list at the end of the longer list, will make **Union** faster.

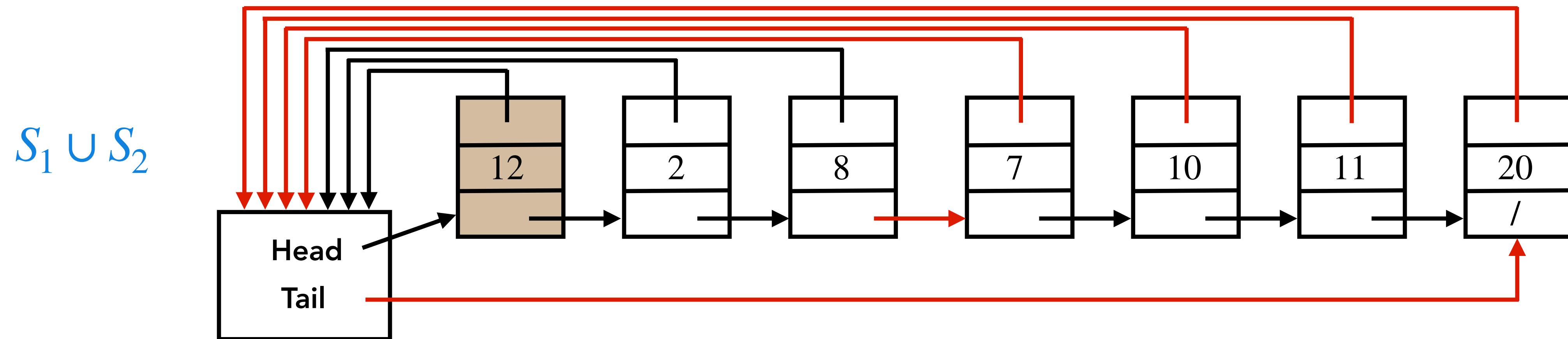
Disjoint-Sets as Linked Lists



Heuristic: Appending the shorter list at the end of the longer list, will make **Union** faster.

Claim: A sequence of m Make-Set, Union, and Find-Set operations,

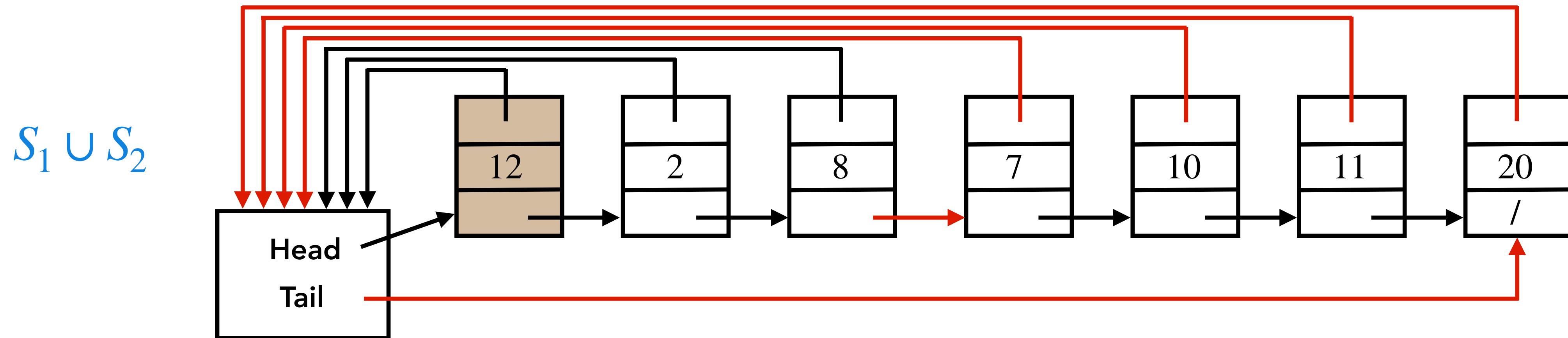
Disjoint-Sets as Linked Lists



Heuristic: Appending the shorter list at the end of the longer list, will make **Union** faster.

Claim: A sequence of m Make-Set, Union, and Find-Set operations, first n of which are Make-Set

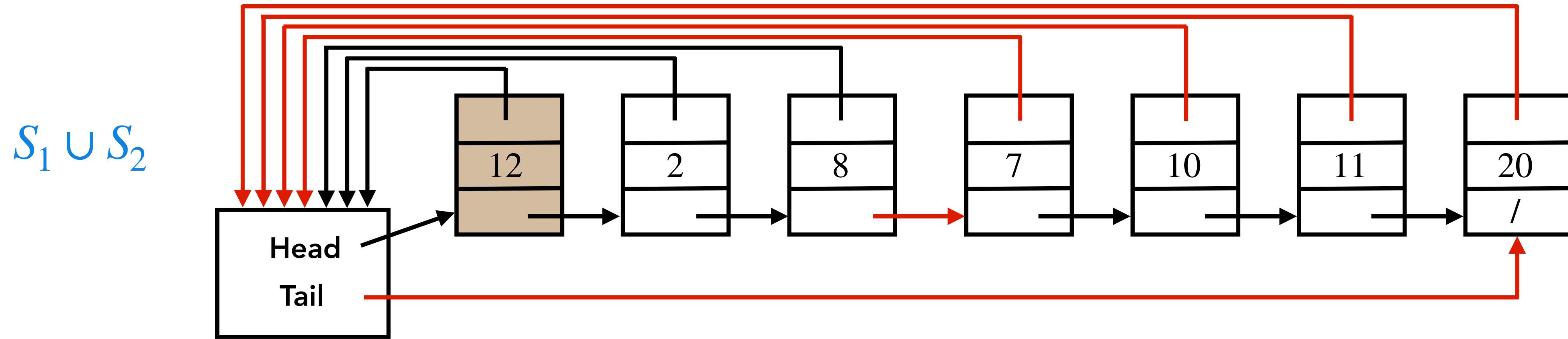
Disjoint-Sets as Linked Lists



Heuristic: Appending the shorter list at the end of the longer list, will make **Union** faster.

Claim: A sequence of m **Make-Set**, **Union**, and **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m + n \log n)$ time under the above heuristic.

Disjoint-Sets as Linked Lists



Heuristic: Appending the shorter list at the end of the longer list, will make **Union** faster.

Claim: A sequence of m **Make-Set**, **Union**, and **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m + n \log n)$ time under the above heuristic.

Proof: DIY.

Disjoint-Sets as Trees

Disjoint-Sets as Trees

Idea: We maintain the **dynamic disjoint sets** in the following way:

Disjoint-Sets as Trees

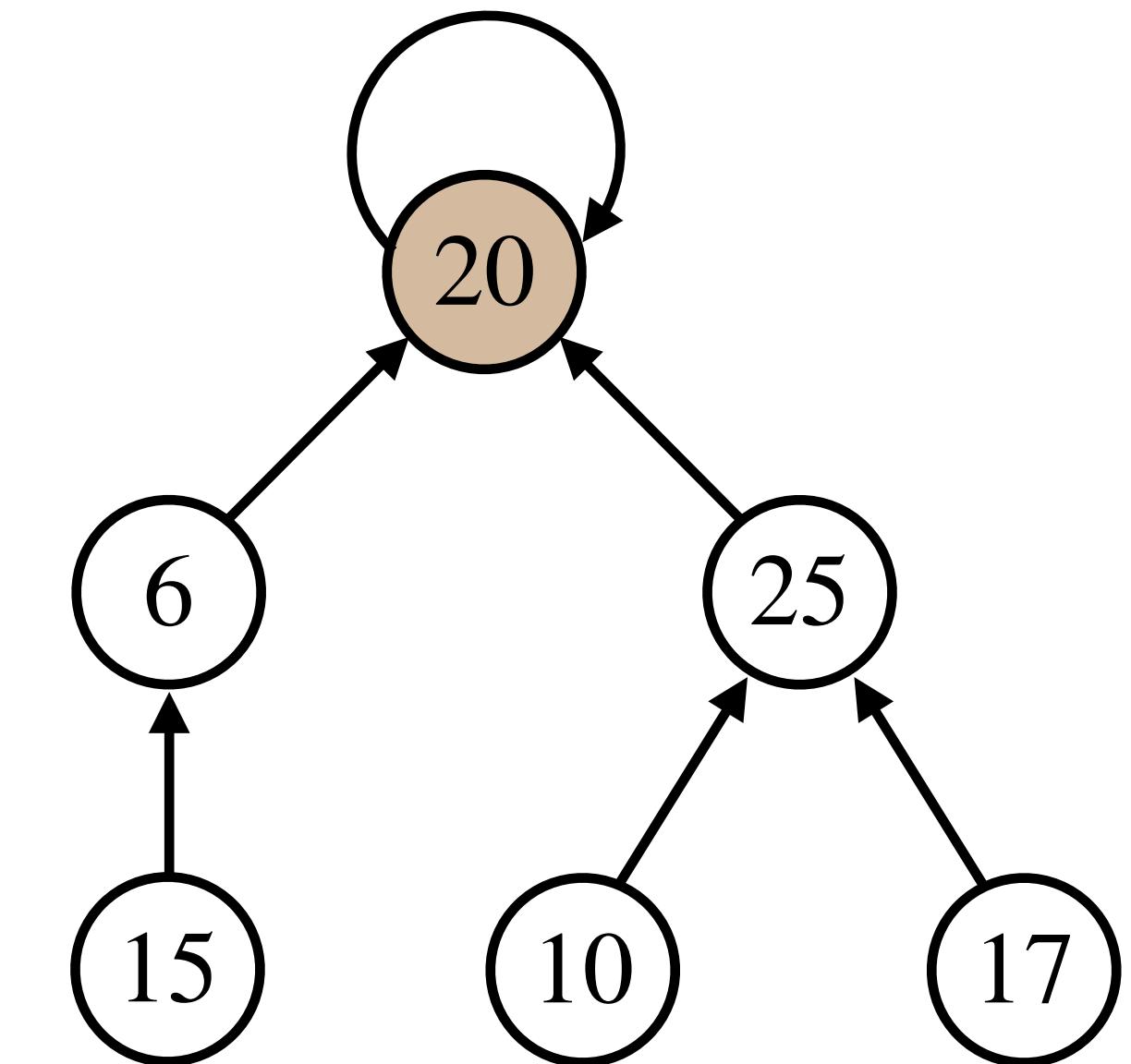
Idea: We maintain the **dynamic disjoint sets** in the following way:

- Keep sets as **rooted trees**.

Disjoint-Sets as Trees

Idea: We maintain the **dynamic disjoint sets** in the following way:

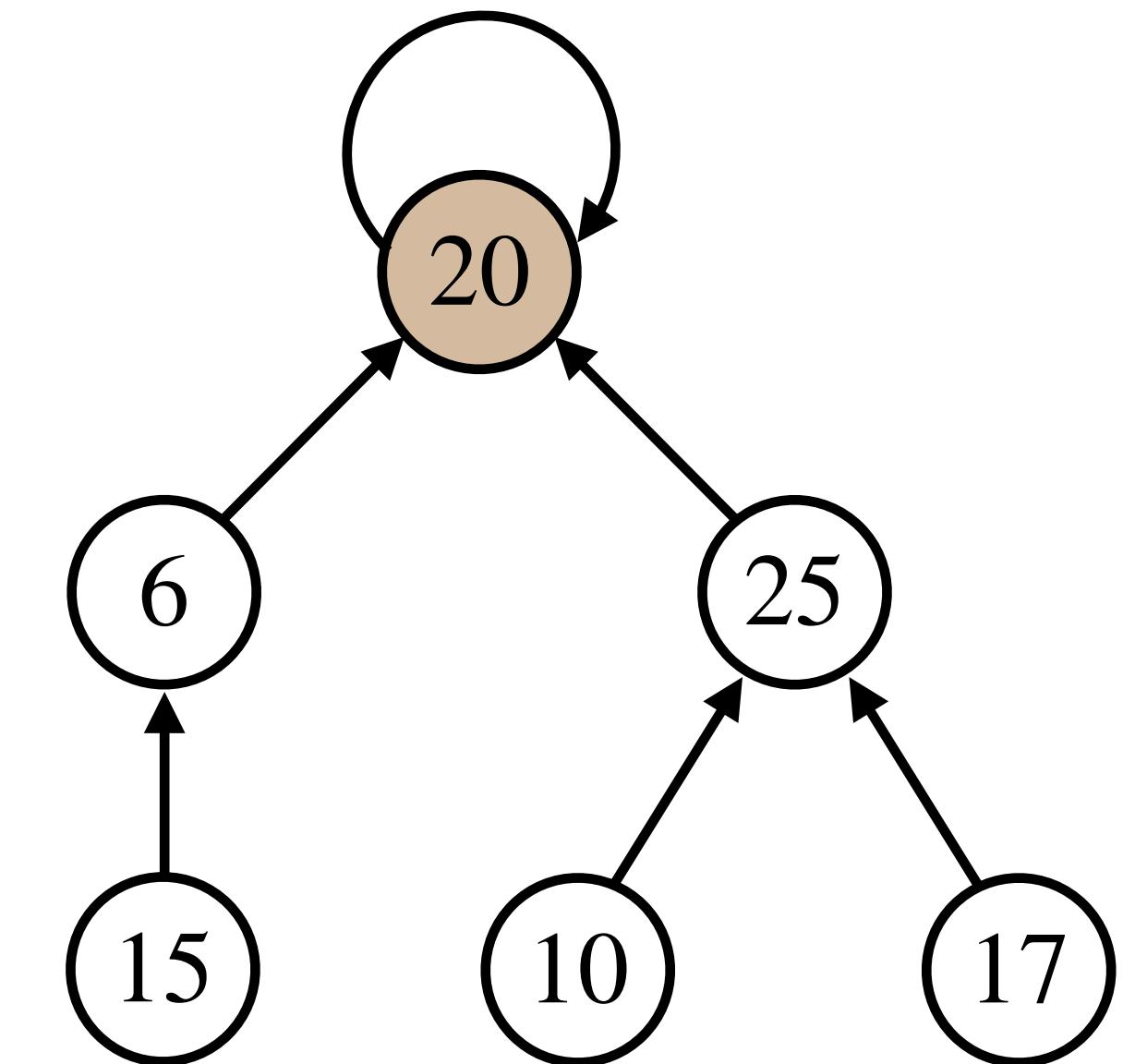
- Keep sets as **rooted trees**.



Disjoint-Sets as Trees

Idea: We maintain the **dynamic disjoint sets** in the following way:

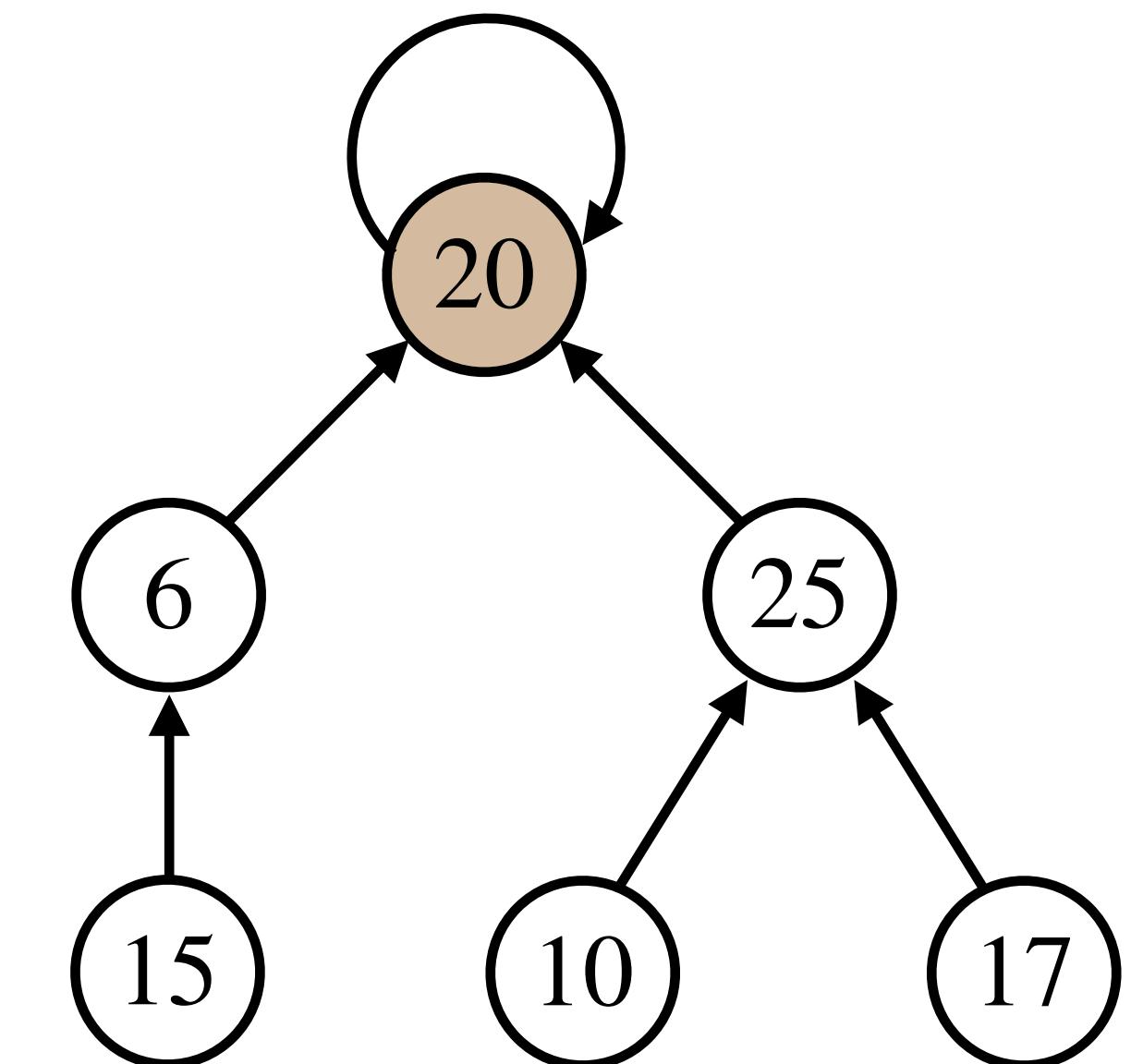
- Keep sets as **rooted trees**.
- Each node points to its **parent**.



Disjoint-Sets as Trees

Idea: We maintain the **dynamic disjoint sets** in the following way:

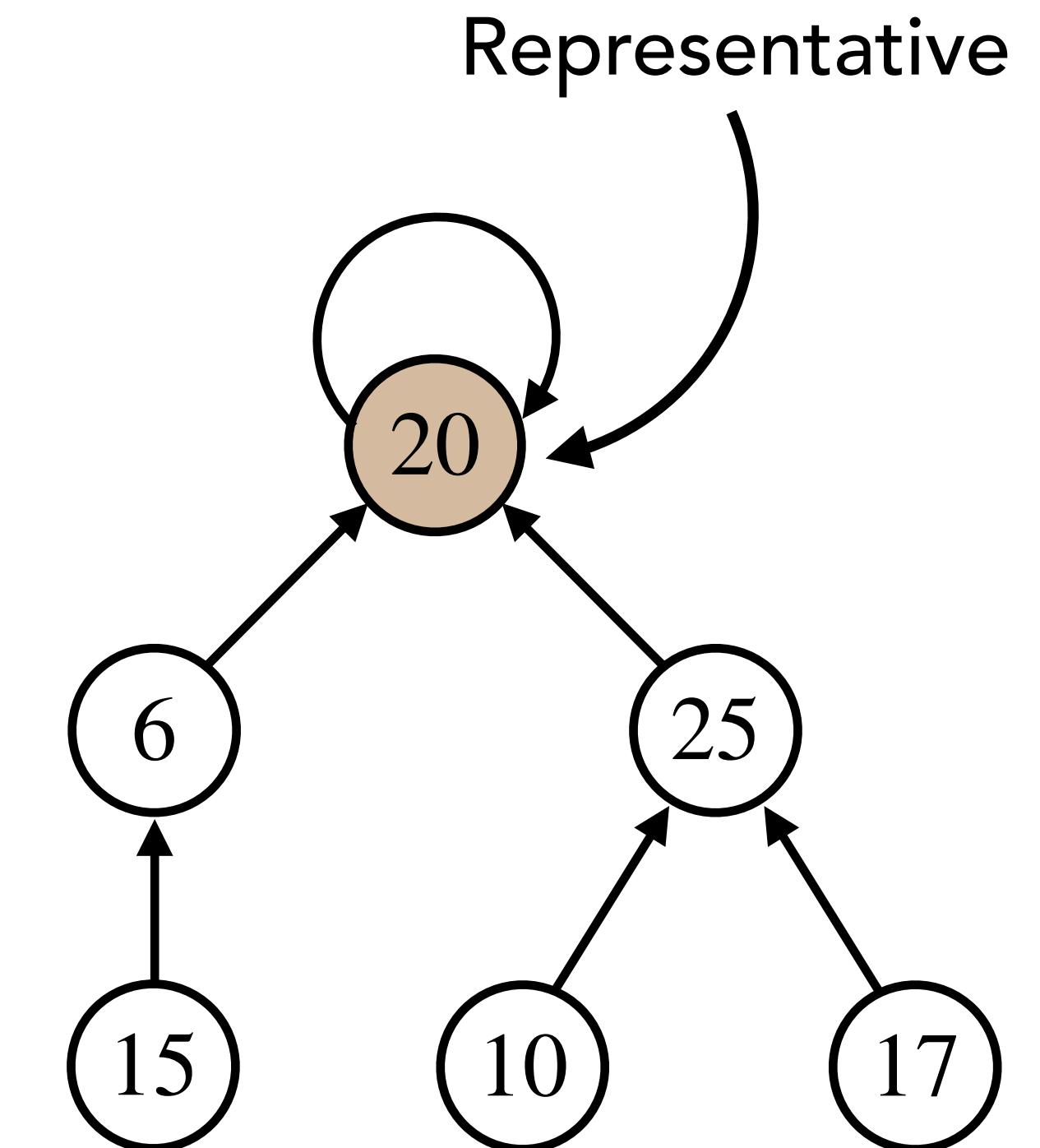
- Keep sets as **rooted trees**.
- Each node points to its **parent**.
- Root is its own parent and the **representative** of the set.



Disjoint-Sets as Trees

Idea: We maintain the **dynamic disjoint sets** in the following way:

- Keep sets as **rooted trees**.
- Each node points to its **parent**.
- Root is its own parent and the **representative** of the set.



Height in Disjoint-Sets as Trees

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a descendant leaf to x .

Height in Disjoint-Sets as Trees

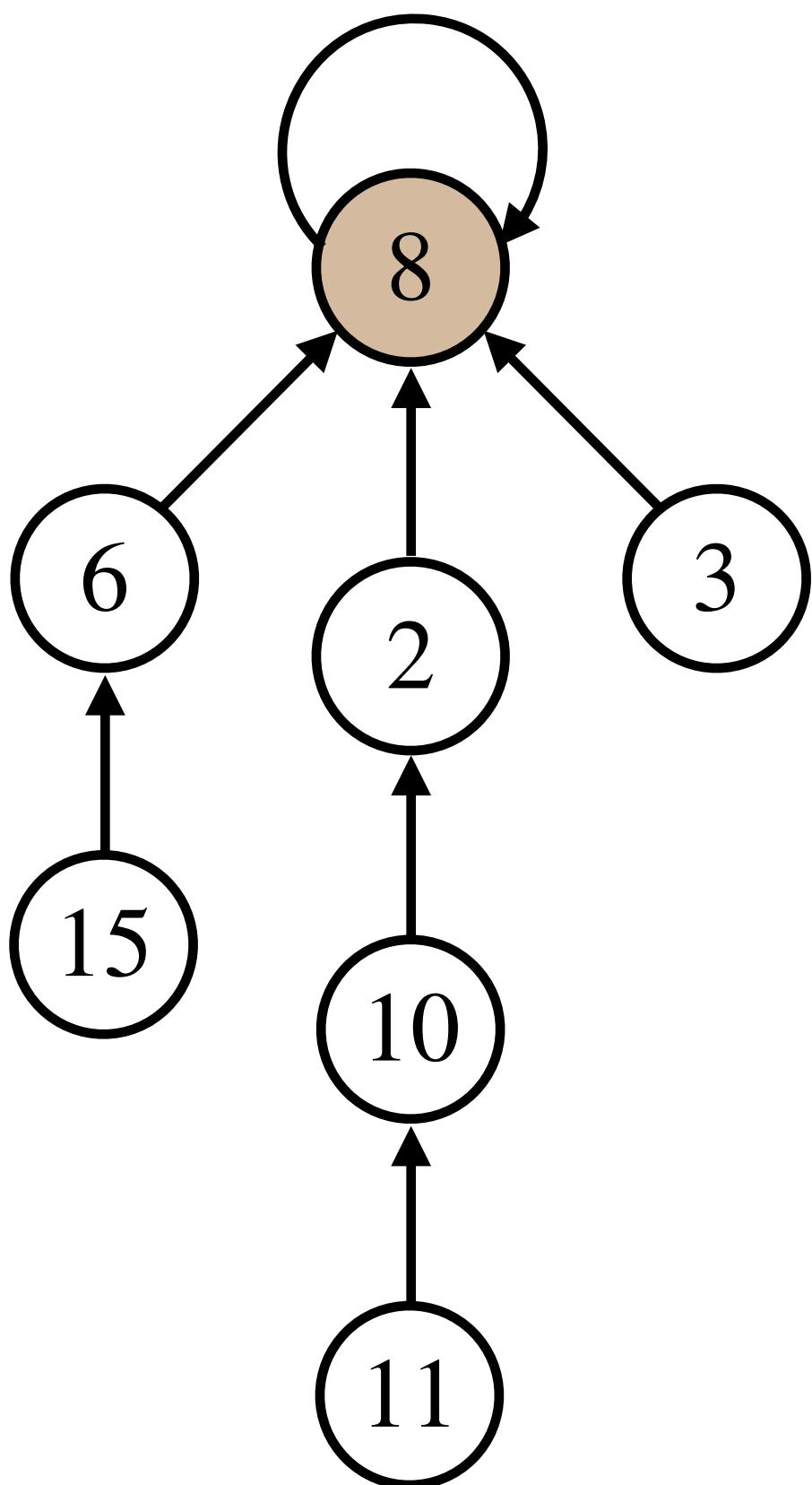
Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a descendant leaf to x .

Example:

Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a **descendant leaf** to x .

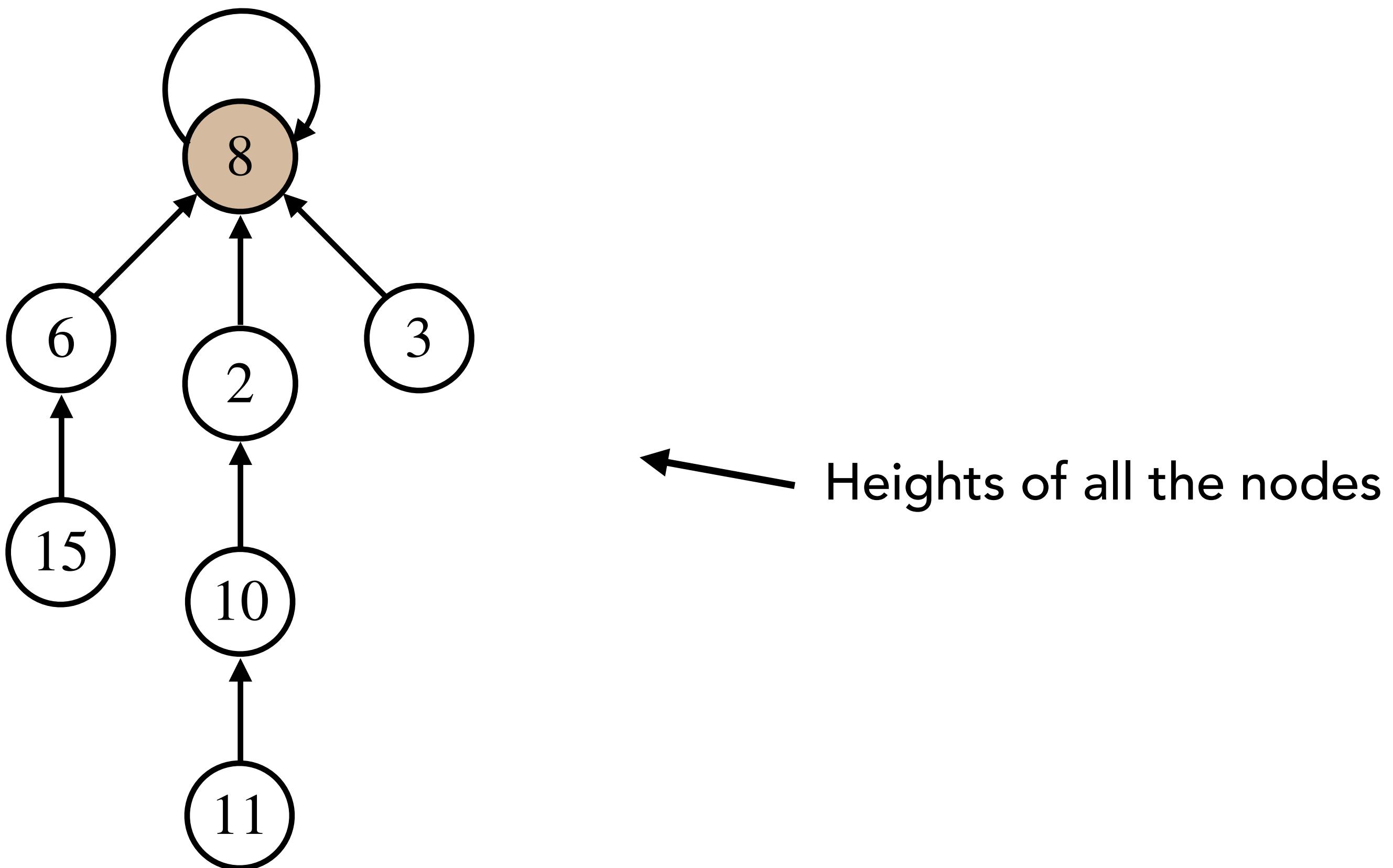
Example:



Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a **descendant leaf** to x .

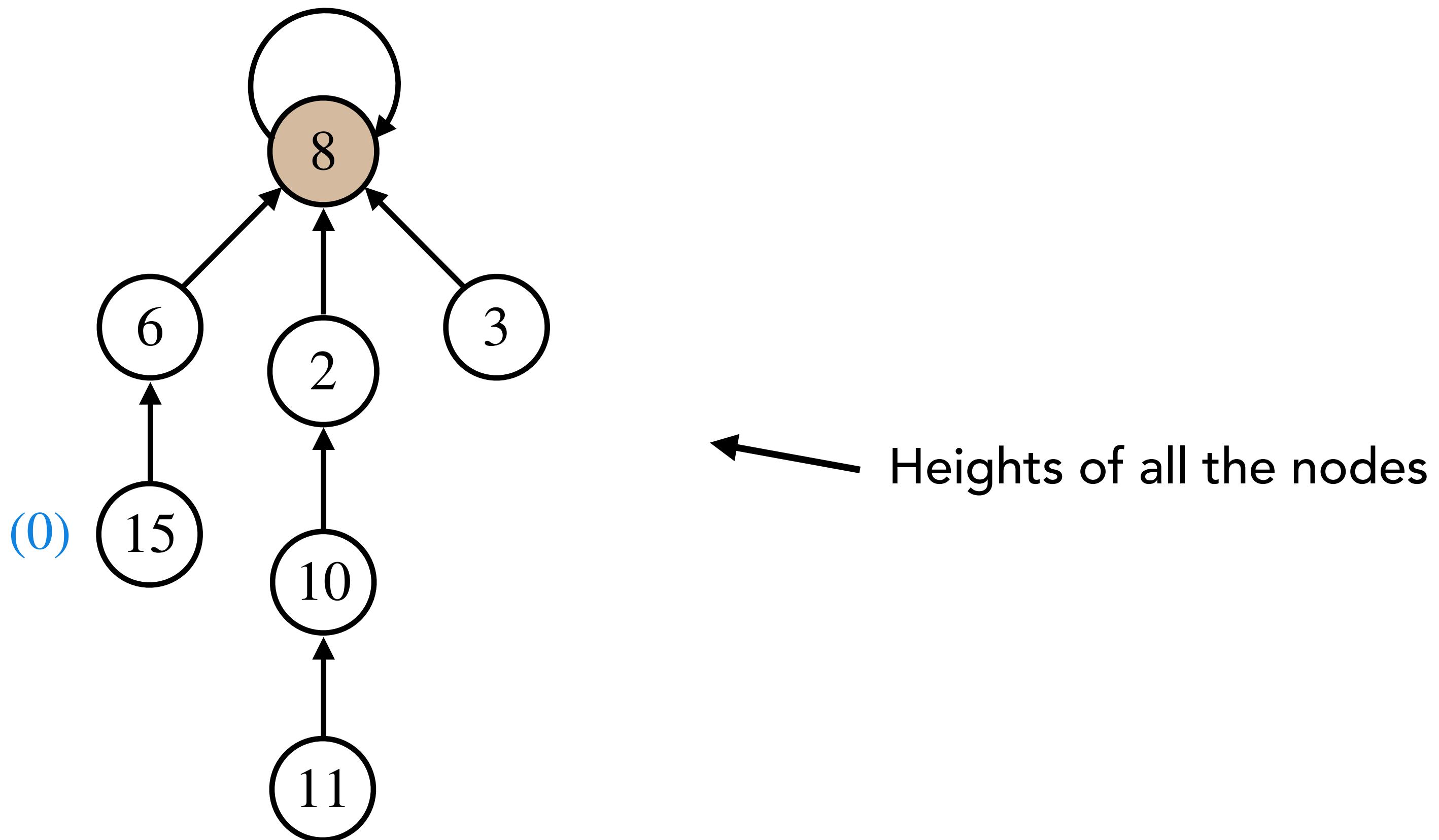
Example:



Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a **descendant leaf** to x .

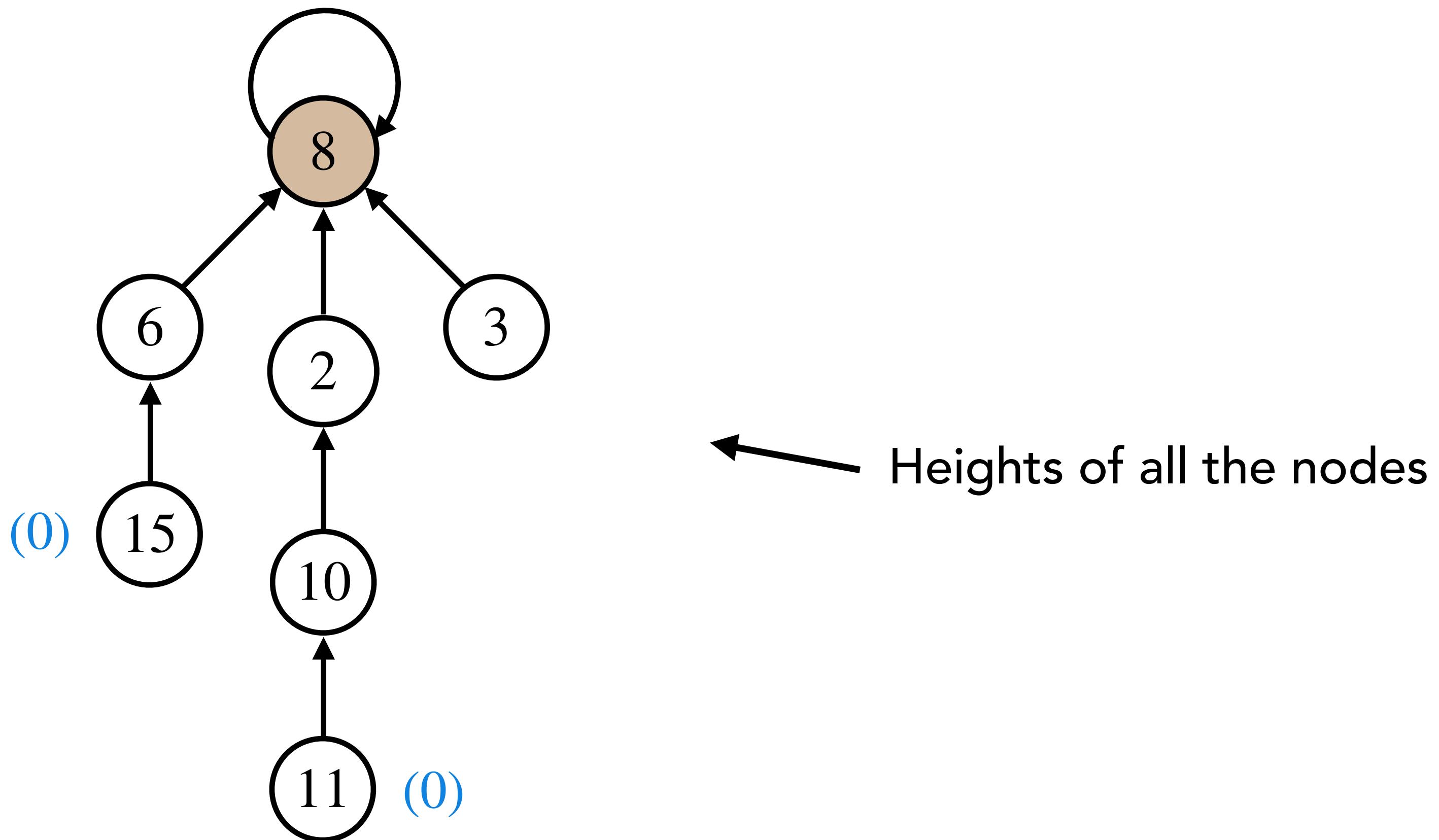
Example:



Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a **descendant leaf** to x .

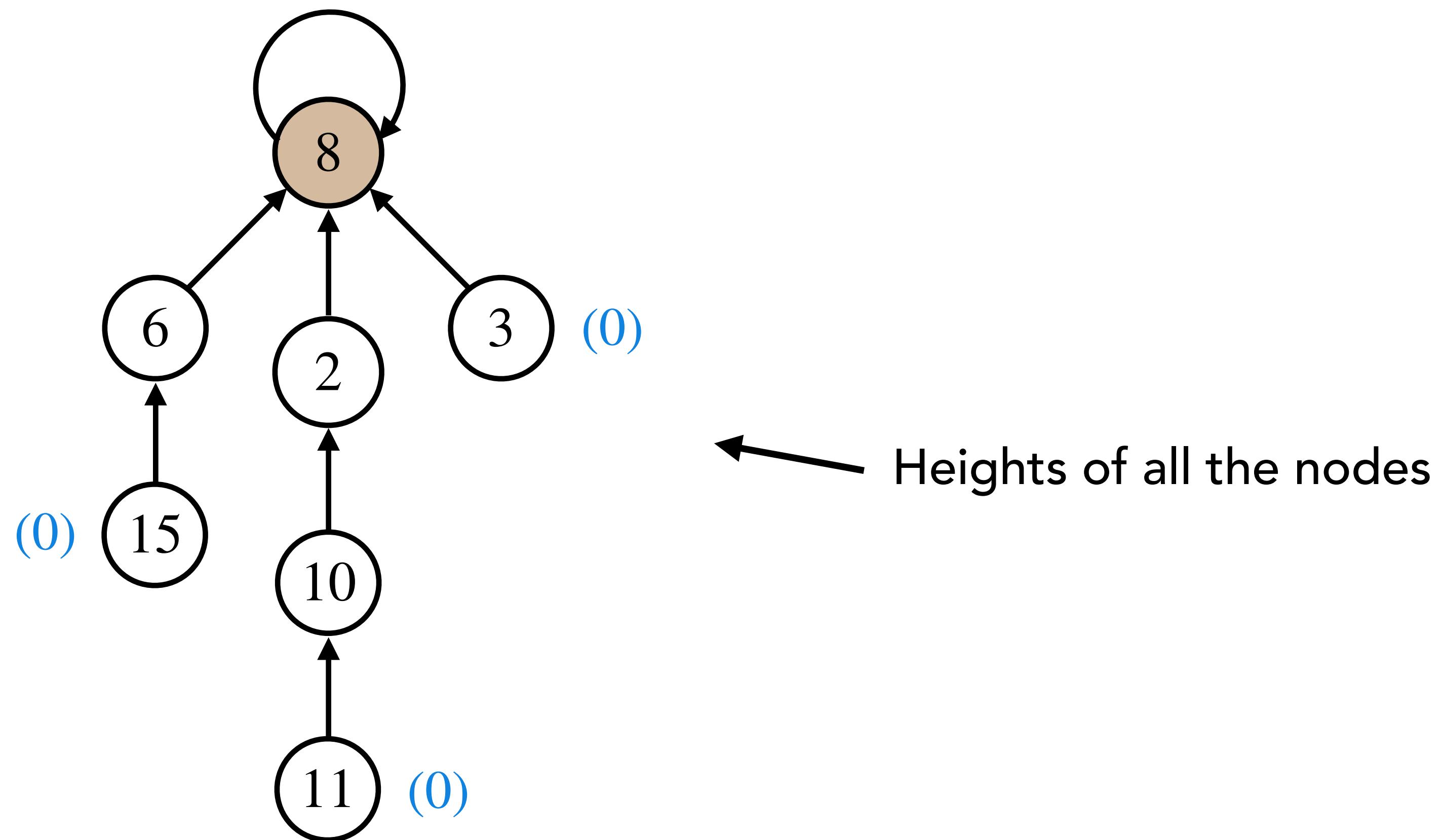
Example:



Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a **descendant leaf** to x .

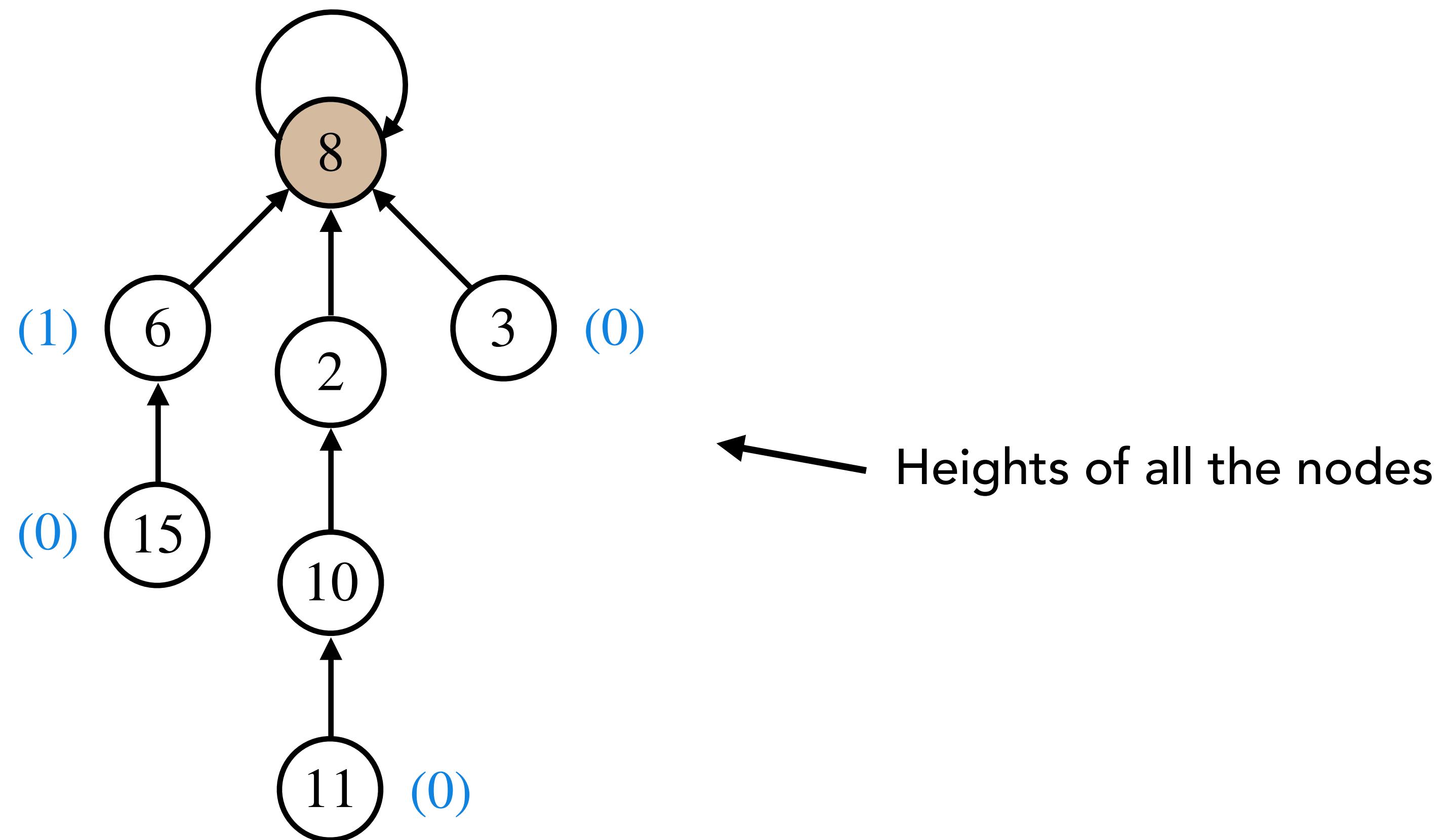
Example:



Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a **descendant leaf** to x .

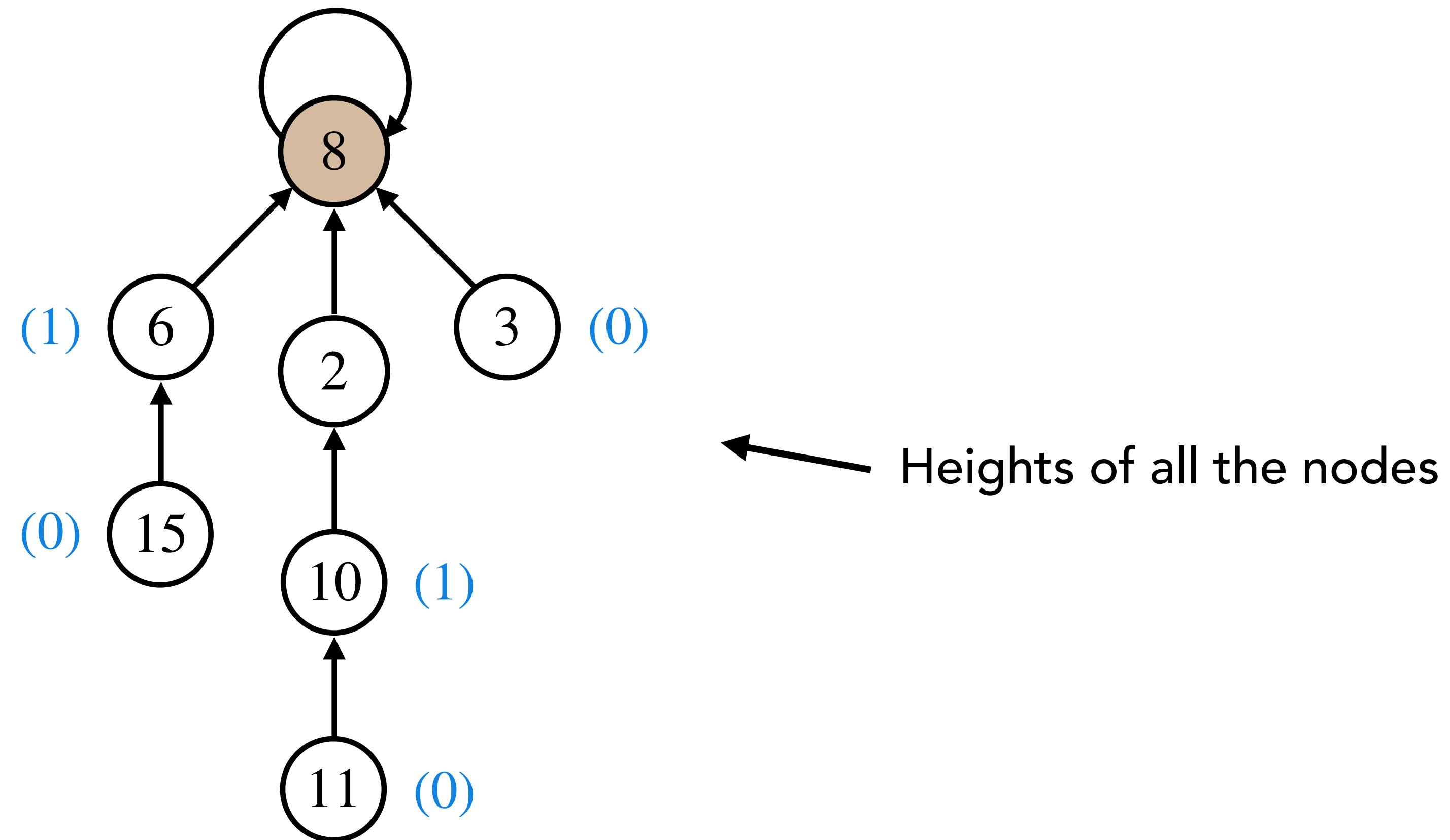
Example:



Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a **descendant leaf** to x .

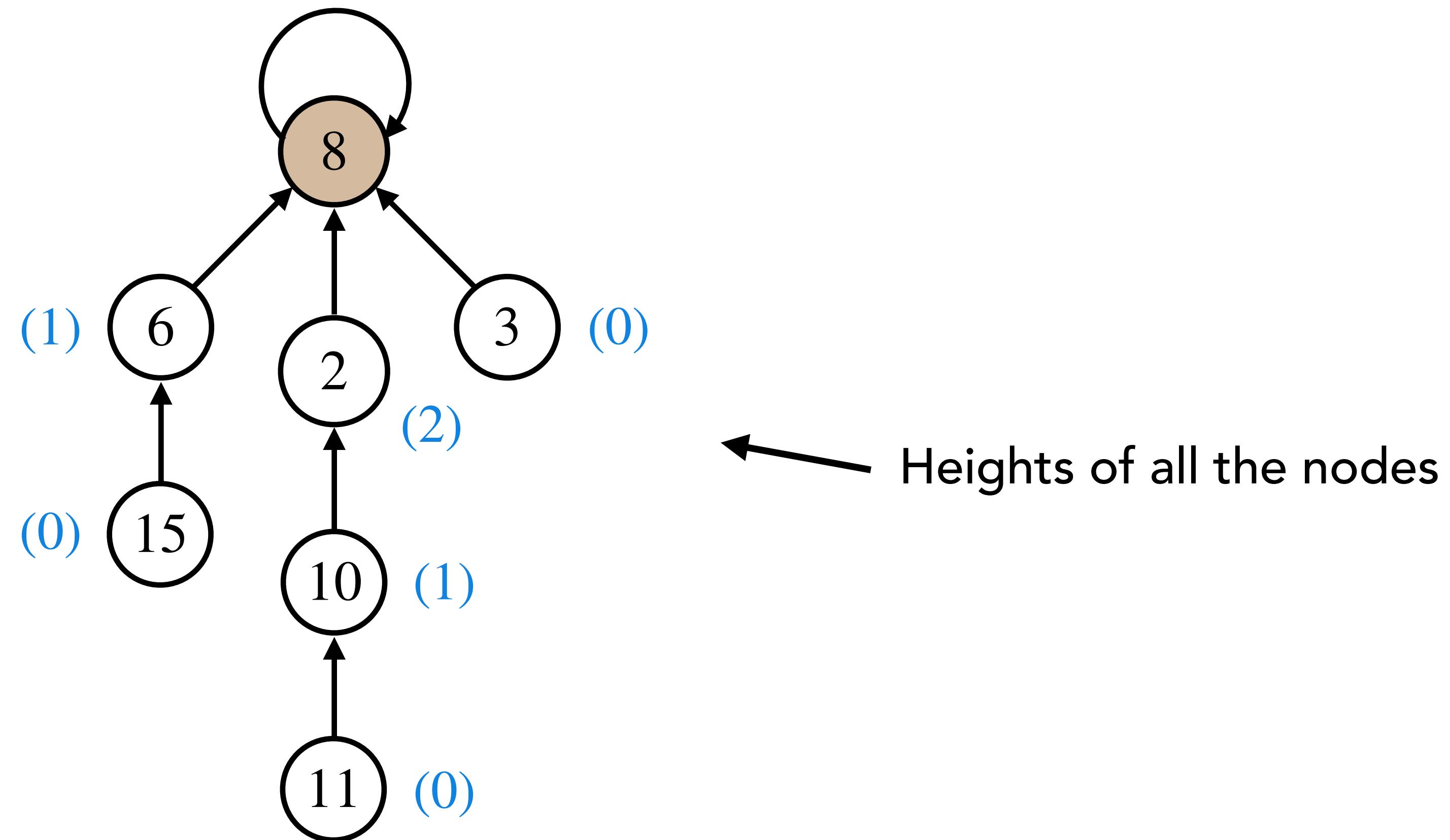
Example:



Height in Disjoint-Sets as Trees

Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a **descendant leaf** to x .

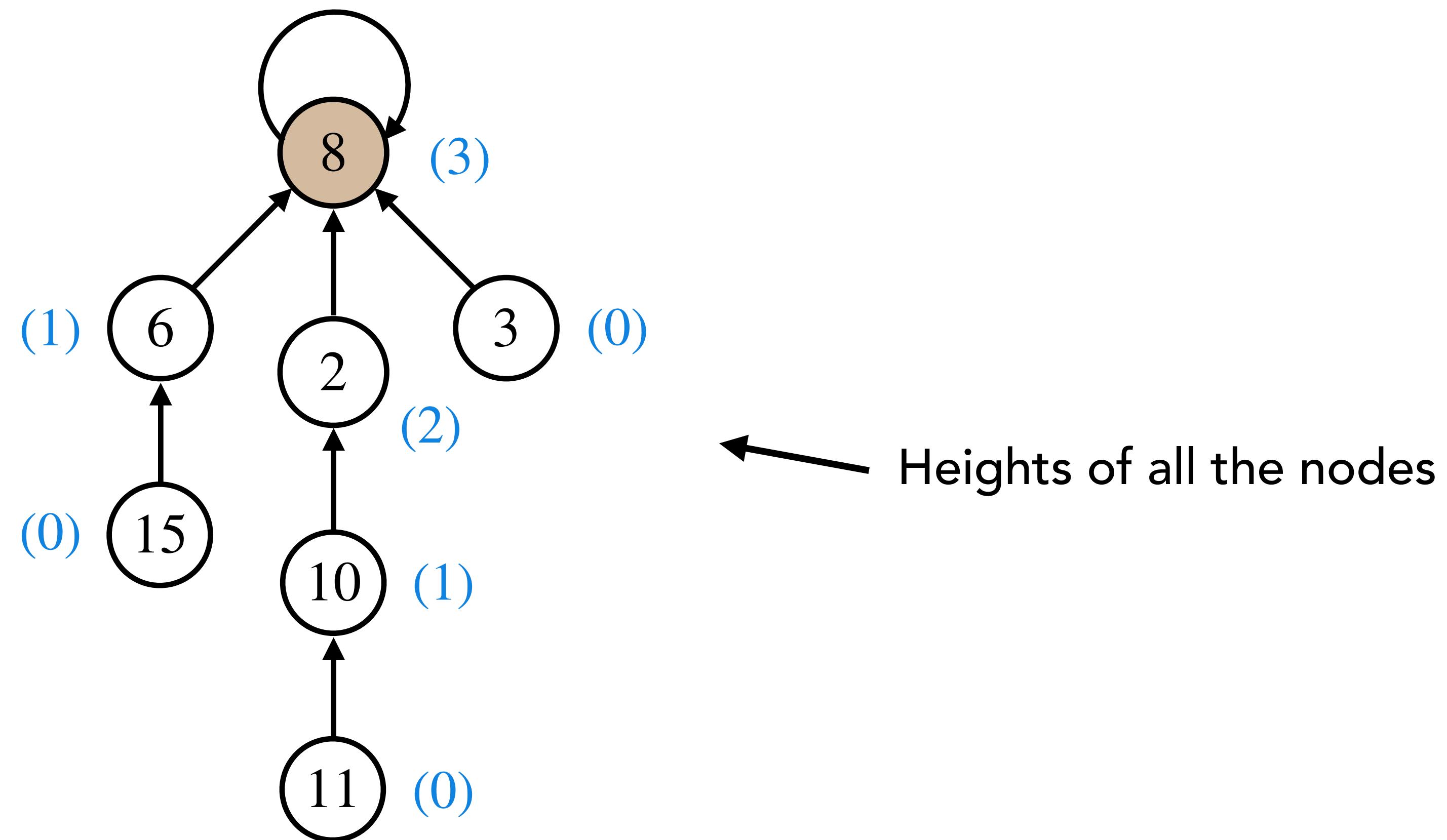
Example:



Height in Disjoint-Sets as Trees

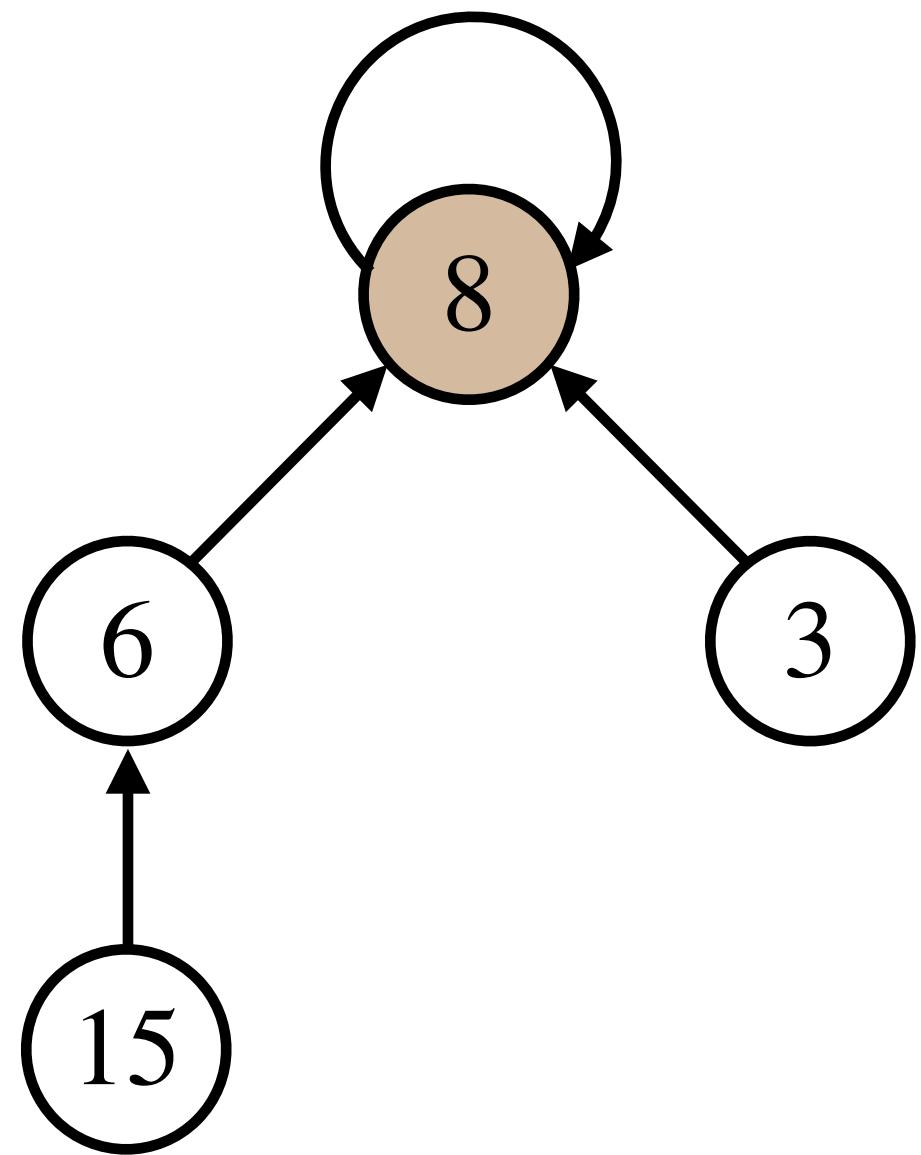
Defn: Height of a node X in a disjoint set represented as a tree is the number of edges in the longest path from a **descendant leaf** to x .

Example:

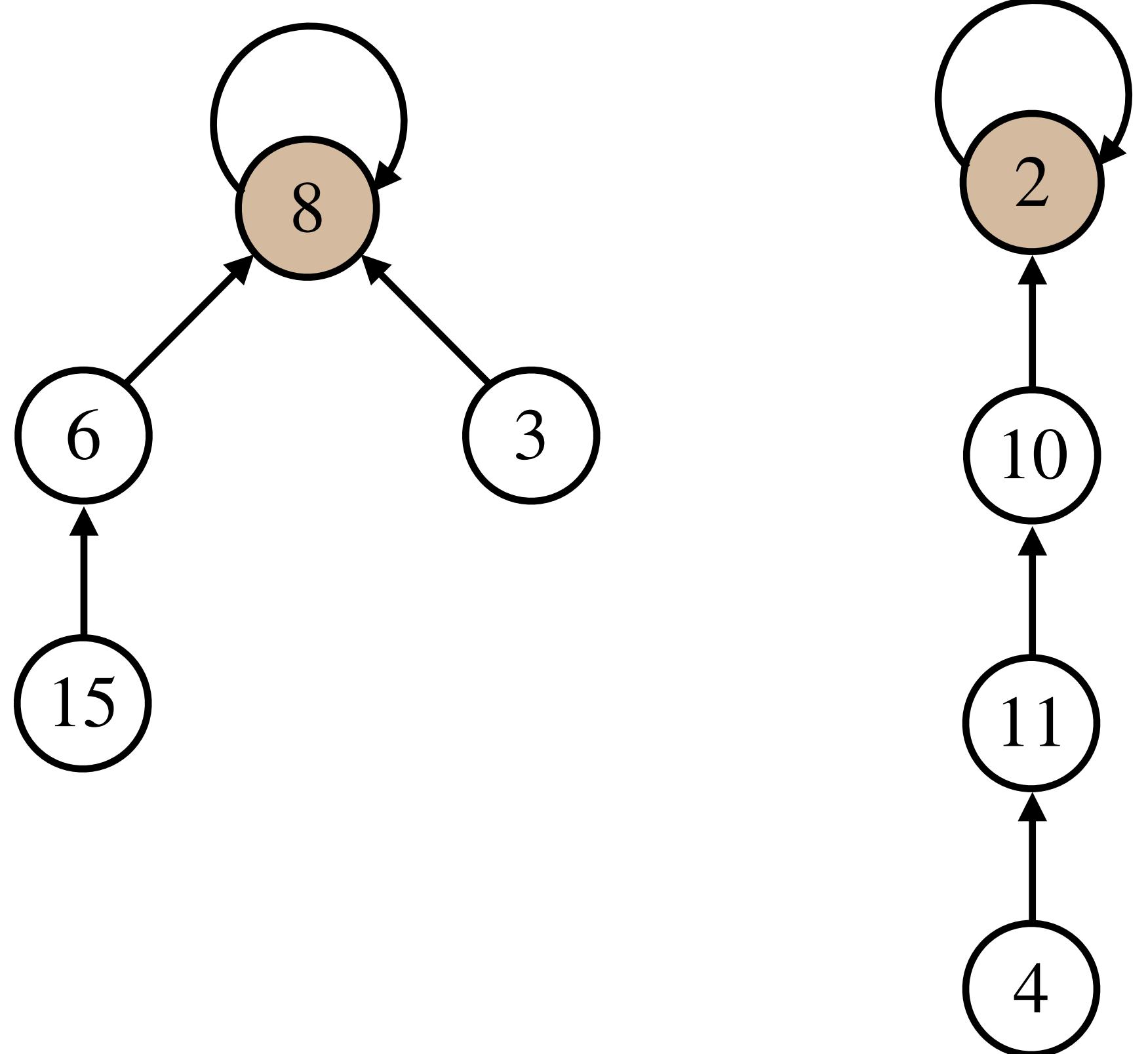


Union on Disjoint-Sets as Trees

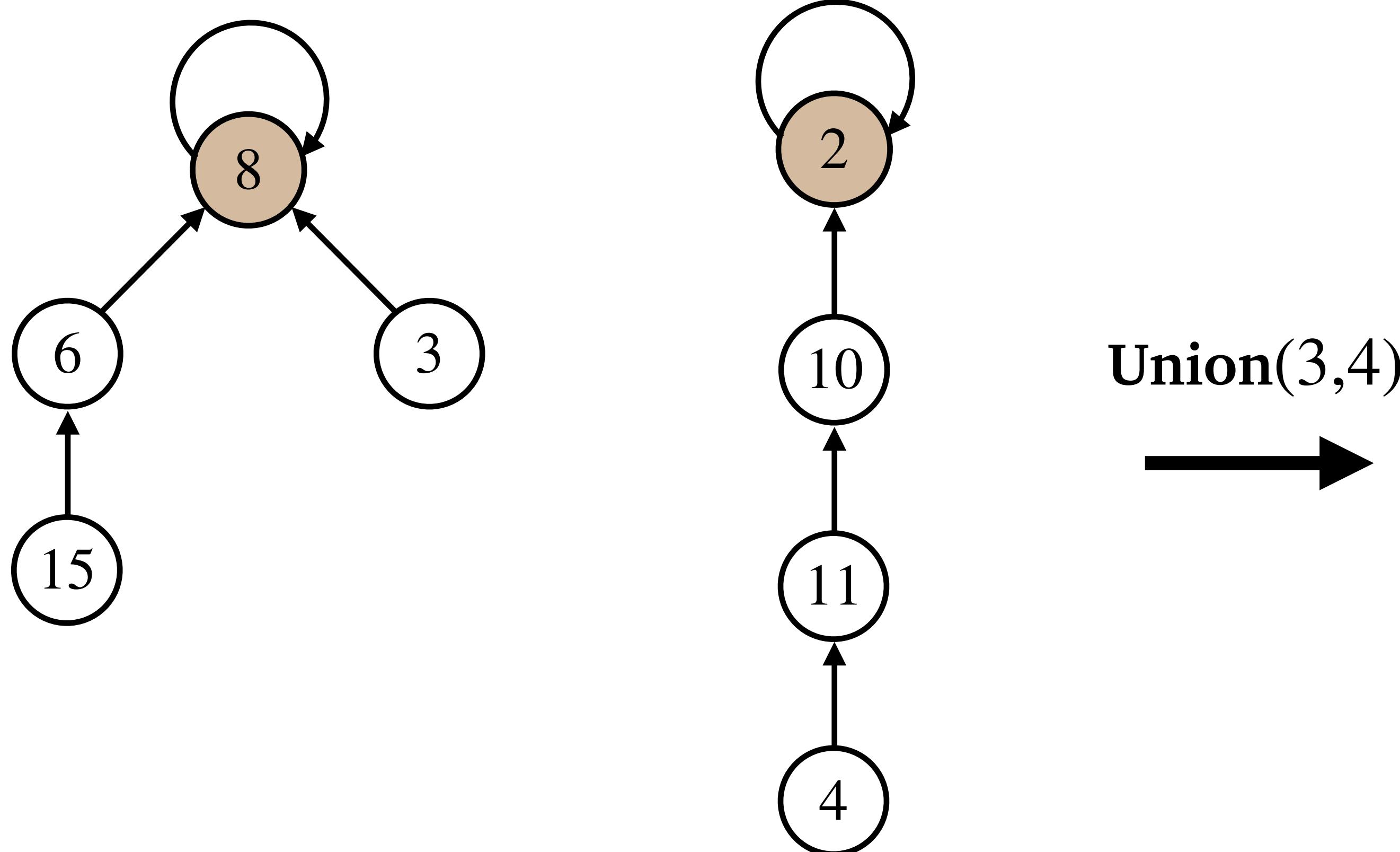
Union on Disjoint-Sets as Trees



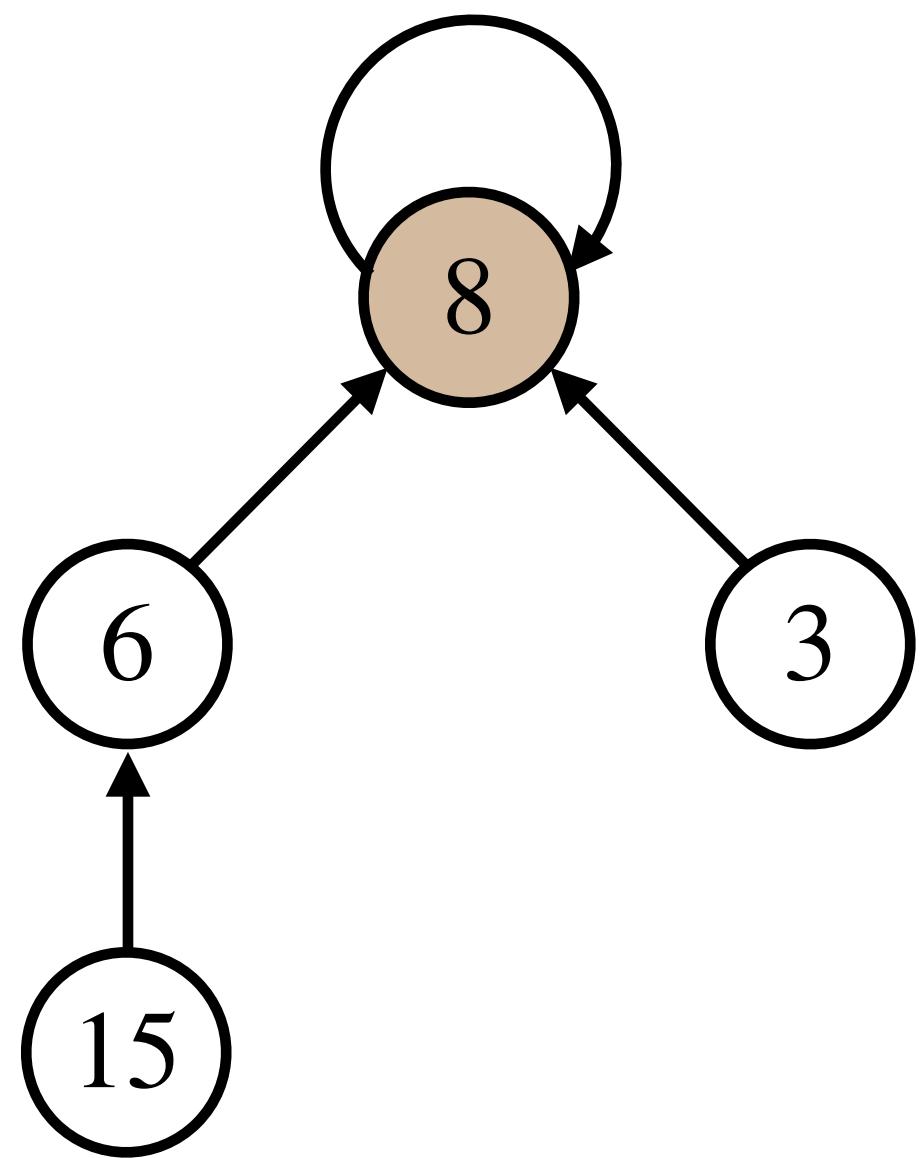
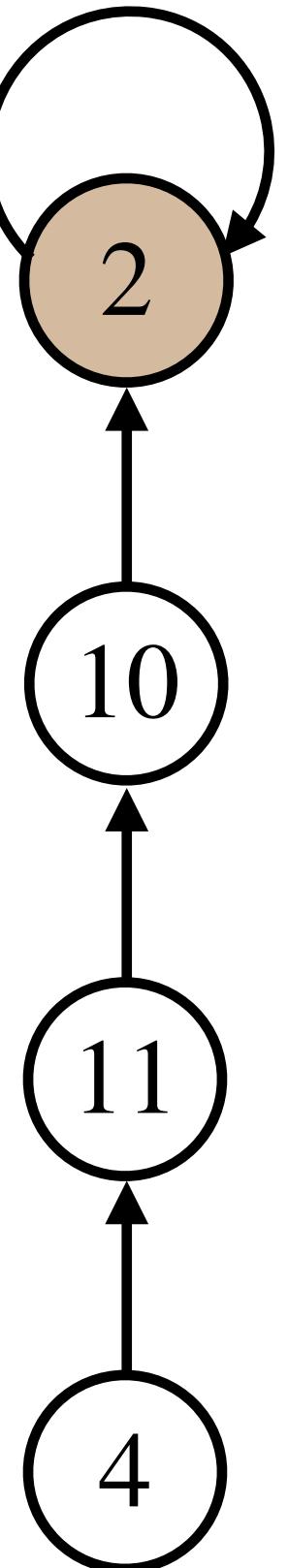
Union on Disjoint-Sets as Trees



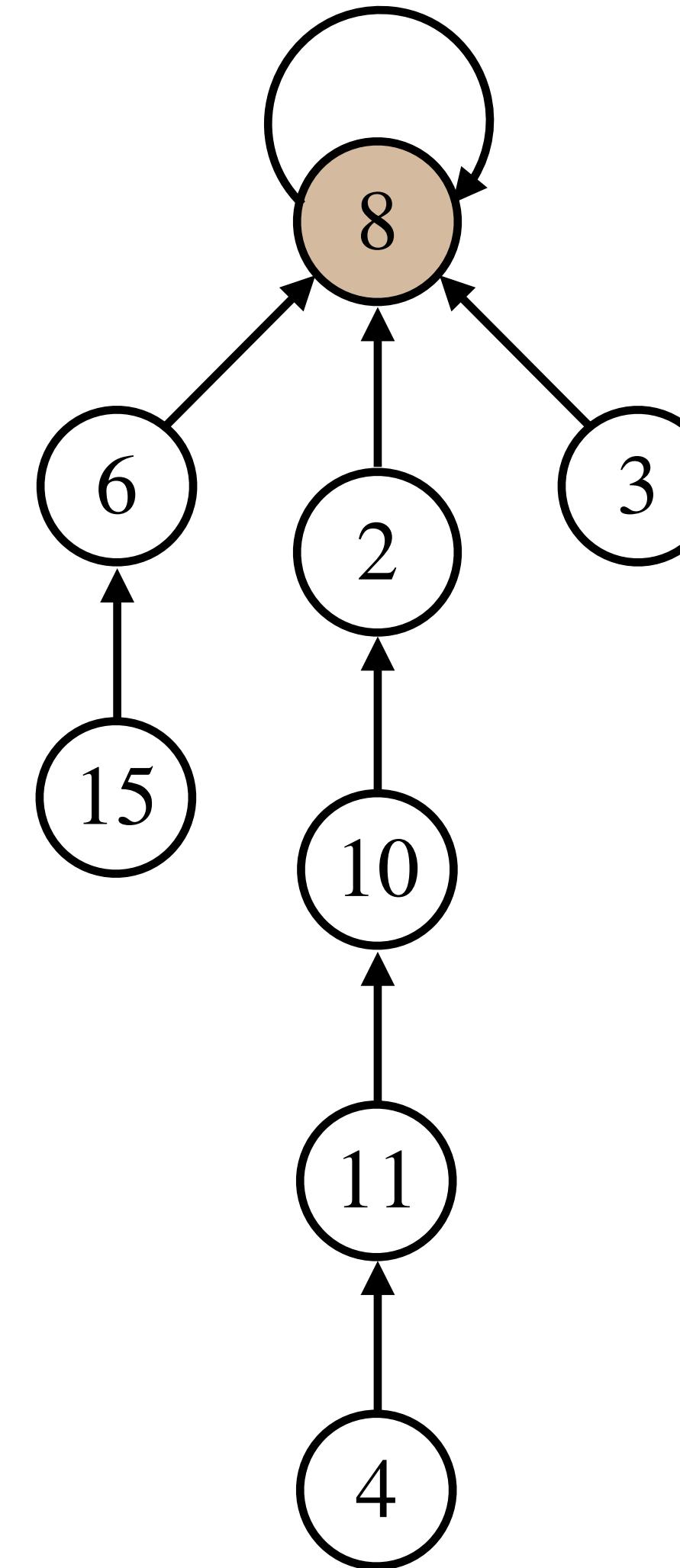
Union on Disjoint-Sets as Trees



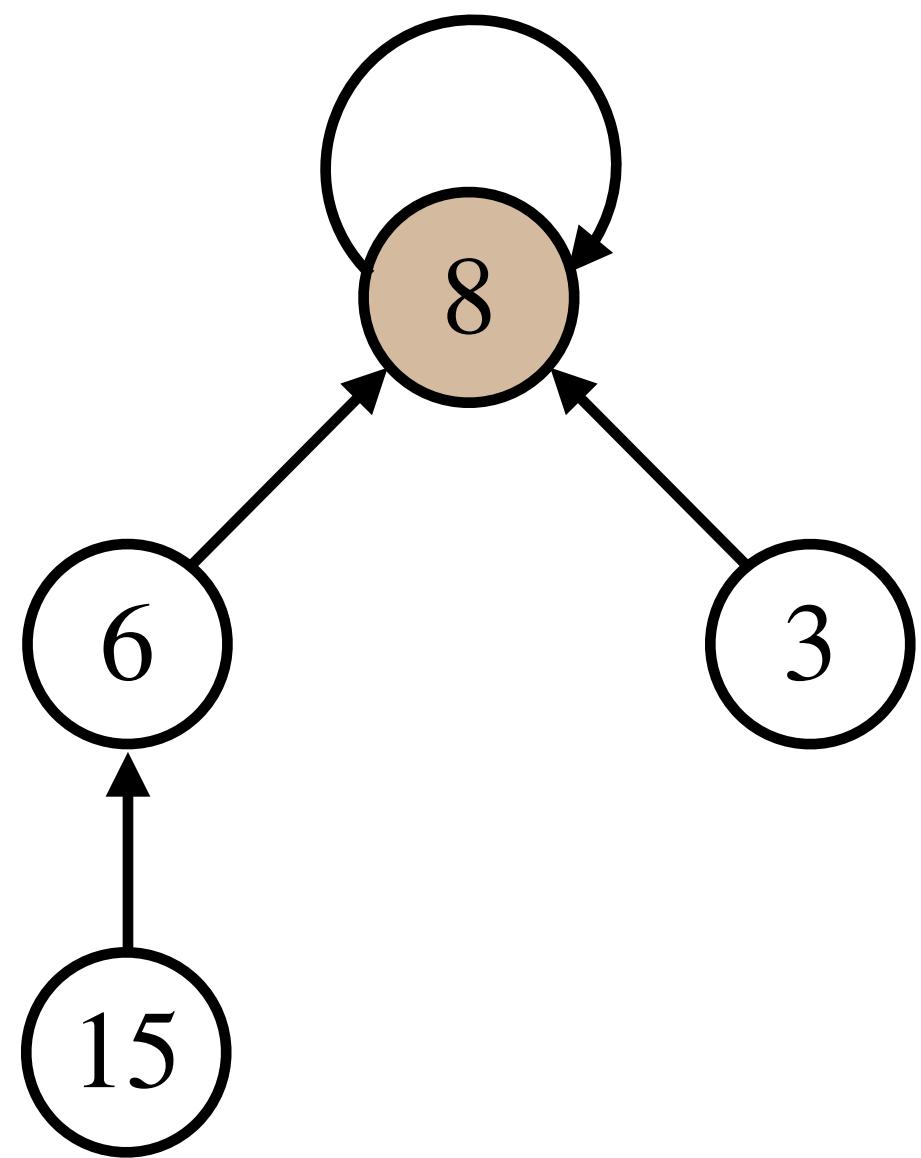
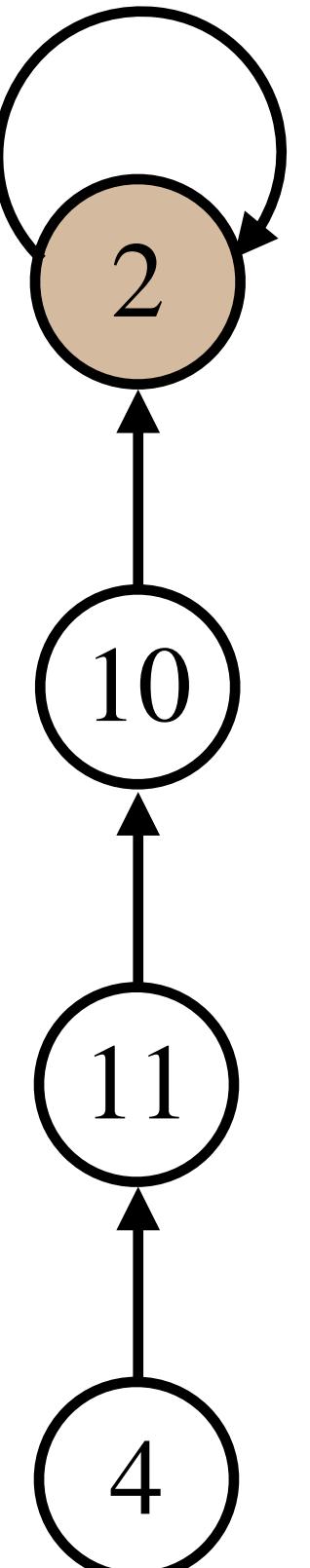
Union on Disjoint-Sets as Trees



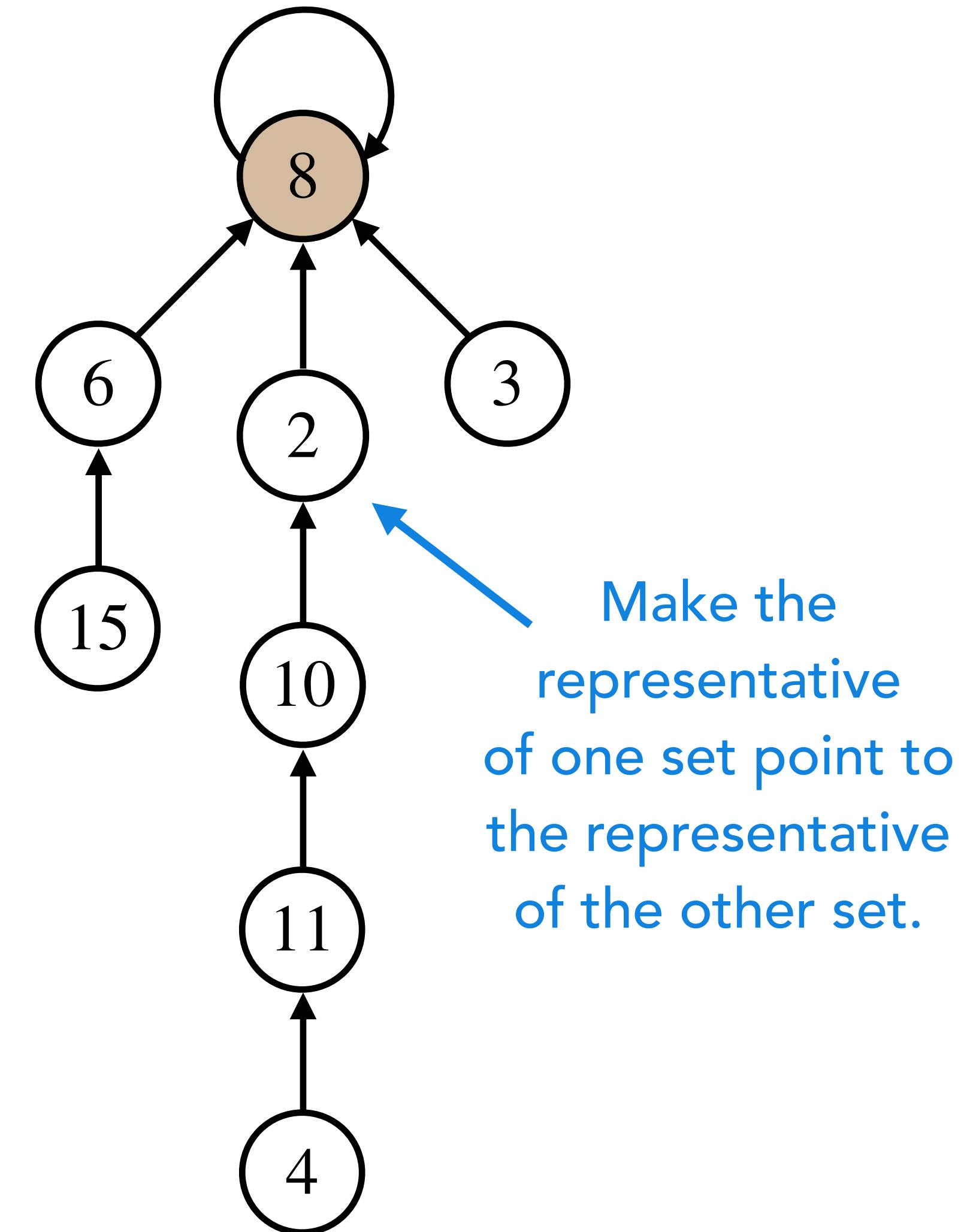
Union(3,4)
→



Union on Disjoint-Sets as Trees

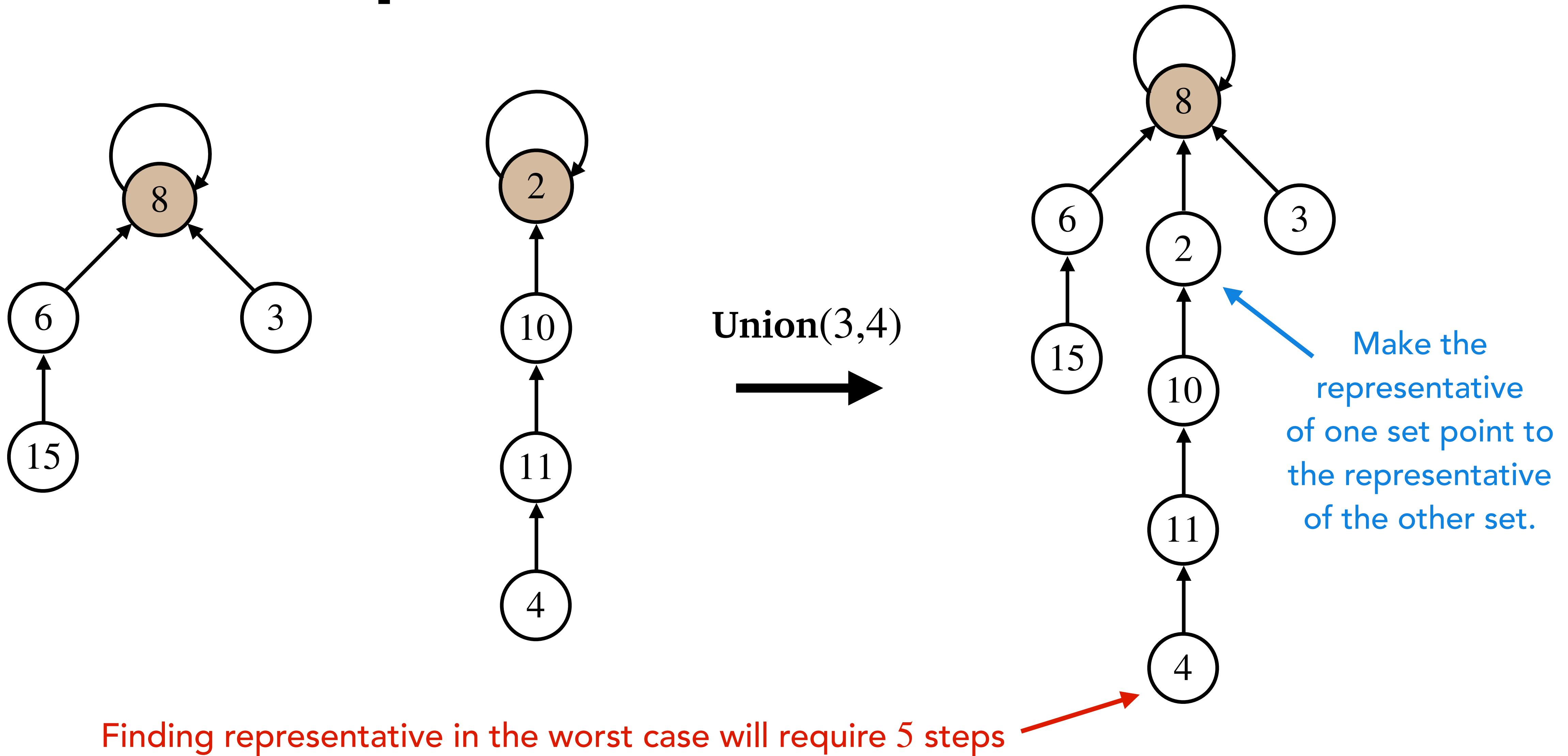


Union(3,4)
→

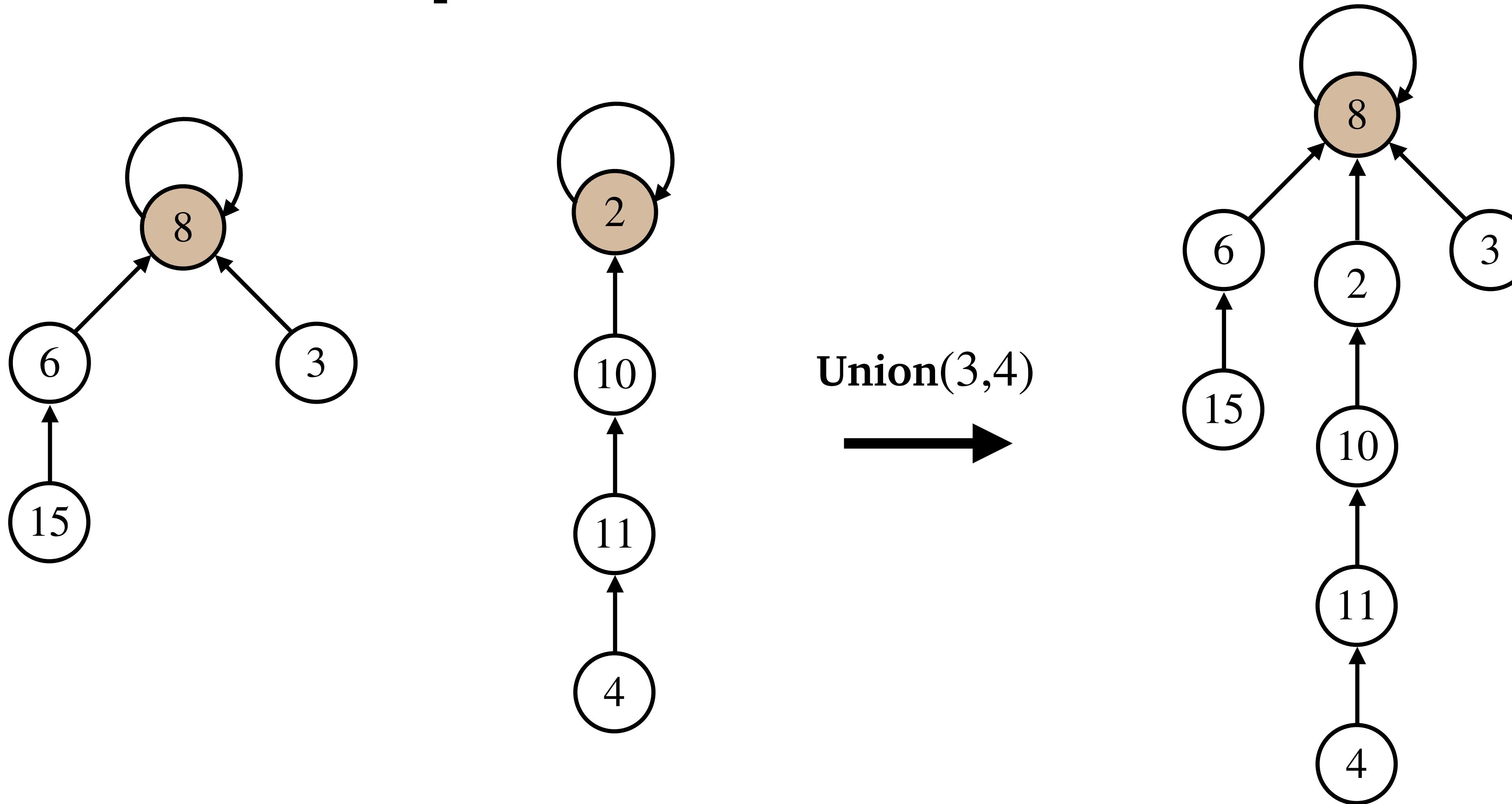


Make the representative of one set point to the representative of the other set.

Union on Disjoint-Sets as Trees

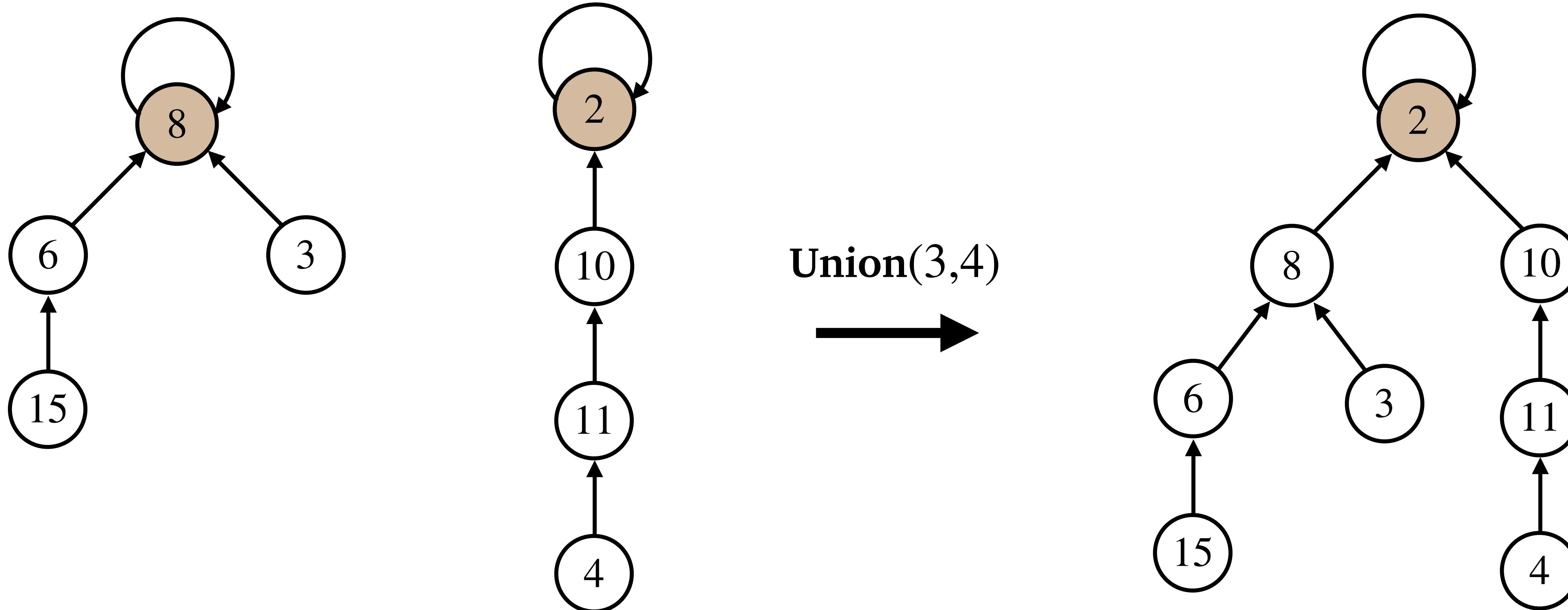


Union on Disjoint-Sets as Trees



Shouldn't representative with smaller height point to representative with larger height?

Union on Disjoint-Sets as Trees



Union on Disjoint-Sets as Trees

