
Lecture 11

Disjoint-Set Data Structure

Source: Introduction to Algorithms, CLRS

Finding Friend Groups on Facebook

Finding Friend Groups on Facebook

Users:

Finding Friend Groups on Facebook

Users: 1 2 3 4 98 99 … …

Finding Friend Groups on Facebook

1 2 3 4 98 99 … …Groups:

Make groups of individuals

Finding Friend Groups on Facebook

Groups:

Make groups of individuals

Merge them as & are friends2 3

1 2 3 4 98 99 … …

Finding Friend Groups on Facebook

1 2 4 98 99 … …Groups: 3

Finding Friend Groups on Facebook

1 2 4 98 99 … …Groups:

Merge them as & are friends4 98

3

Finding Friend Groups on Facebook

1 2
3

4
98

99 … …Groups:

Finding Friend Groups on Facebook

1 2
3

4
98

99 … …Groups:

Merge them as & are friends3 4

Finding Friend Groups on Facebook

1 2

3
4
98

99 … …Groups:

Finding Friend Groups on Facebook

2 3 4

98

…Groups:
1 10

47
18

12 65
8099

13

23

Many merges later

Finding Friend Groups on Facebook

2 3 4

98

…Groups:
1 10

47
18

12 65
8099

13

23

Many merges later

There should be a way to tell to which group a user belongs.

Finding Friend Groups on Facebook

Groups:
2 3 4

98

…
1 10

47
18

12 65
8099

13

23

Many merges later

There should be a way to tell to which group a user belongs.
We achieve that by having a representative for every group.

Finding Friend Groups on Facebook

Groups:

Goal: Design a data-structure so that:

2 3 4

98

…
1 10

47
18

12 65
8099

13

23

Finding Friend Groups on Facebook

Groups:

Goal: Design a data-structure so that:

• Merging is fast.

2 3 4

98

…
1 10

47
18

12 65
8099

13

23

Finding Friend Groups on Facebook

Groups:

Goal: Design a data-structure so that:

• Merging is fast.

• Finding representative is fast.

2 3 4

98

…
1 10

47
18

12 65
8099

13

23

Finding Friend Groups on Facebook

Groups:

Goal: Design a data-structure so that:

• Merging is fast.

• Finding representative is fast.

2 3 4

98

…
1 10

47
18

12 65
8099

13

23

Instead of optimising the
cost of individual operations
we will optimise a sequence

of such operations.

Disjoint-set Data Structure

Disjoint-set Data Structure

Disjoint-set data structure maintains:

Disjoint-set Data Structure

Disjoint-set data structure maintains:

• A collection of disjoint dynamic sets.S = {S1, S2, …, Sk}

Disjoint-set Data Structure

Disjoint-set data structure maintains:

• A collection of disjoint dynamic sets.S = {S1, S2, …, Sk}

• A representative for each set which is a member of the set.

Disjoint-set Data Structure

Disjoint-set data structure maintains:

• A collection of disjoint dynamic sets.S = {S1, S2, …, Sk}

Operations of disjoint-set data structure:

• A representative for each set which is a member of the set.

Disjoint-set Data Structure

Disjoint-set data structure maintains:

• A collection of disjoint dynamic sets.S = {S1, S2, …, Sk}

Operations of disjoint-set data structure:

• Make-Set : Creates a new set with as the only member. Make its own representative.(x) x x

• A representative for each set which is a member of the set.

Disjoint-set Data Structure

Disjoint-set data structure maintains:

• A collection of disjoint dynamic sets.S = {S1, S2, …, Sk}

Operations of disjoint-set data structure:

• Make-Set : Creates a new set with as the only member. Make its own representative.(x) x x

• A representative for each set which is a member of the set.

• Union : Adds to the collection, where and contain and , respectively.(x, y) Sx ∪ Sy Sx Sy x y

Disjoint-set Data Structure

Disjoint-set data structure maintains:

• A collection of disjoint dynamic sets.S = {S1, S2, …, Sk}

Operations of disjoint-set data structure:

• Make-Set : Creates a new set with as the only member. Make its own representative.(x) x x

Choose a representative for .Sx ∪ Sy

• A representative for each set which is a member of the set.

• Union : Adds to the collection, where and contain and , respectively.(x, y) Sx ∪ Sy Sx Sy x y

Disjoint-set Data Structure

Disjoint-set data structure maintains:

• A collection of disjoint dynamic sets.S = {S1, S2, …, Sk}

Operations of disjoint-set data structure:

• Make-Set : Creates a new set with as the only member. Make its own representative.(x) x x

Choose a representative for .Sx ∪ Sy Destroys and .Sx Sy

• A representative for each set which is a member of the set.

• Union : Adds to the collection, where and contain and , respectively.(x, y) Sx ∪ Sy Sx Sy x y

Disjoint-set Data Structure

Disjoint-set data structure maintains:

• A collection of disjoint dynamic sets.S = {S1, S2, …, Sk}

Operations of disjoint-set data structure:

• Make-Set : Creates a new set with as the only member. Make its own representative.(x) x x

• Find-Set : Gives the representative of the unique set that contains .(x) x

Choose a representative for .Sx ∪ Sy Destroys and .Sx Sy

• A representative for each set which is a member of the set.

• Union : Adds to the collection, where and contain and , respectively.(x, y) Sx ∪ Sy Sx Sy x y

Applications of Disjoint-set Data Structure

Applications of Disjoint-set Data Structure

Disjoint-set data structure is useful in:

Applications of Disjoint-set Data Structure

Disjoint-set data structure is useful in:

• Finding friend groups on social networks.

Applications of Disjoint-set Data Structure

Disjoint-set data structure is useful in:

• Finding friend groups on social networks.

• Finding connected components in graphs.

Applications of Disjoint-set Data Structure

Disjoint-set data structure is useful in:

• Finding friend groups on social networks.

• Finding connected components in graphs.

• Kruskal’s algorithms to find minimum spanning tree.

Applications of Disjoint-set Data Structure

Disjoint-set data structure is useful in:

• Finding friend groups on social networks.

• Finding connected components in graphs.

• Kruskal’s algorithms to find minimum spanning tree.

• Finding systems on the same network, etc.

Disjoint-Sets as Linked Lists

12 2 8
/

S1

Disjoint-Sets as Linked Lists

Head
Tail

12 2 8
/

S1

Disjoint-Sets as Linked Lists

Head
Tail

12 2 8
/

S1

Disjoint-Sets as Linked Lists

Head
Tail

12 2 8
/

S1

Representatives

Disjoint-Sets as Linked Lists

Head
Tail

Head
Tail

12 2 8 7 10 11 20
/ /

S1 S2

Representatives

Disjoint-Sets as Linked Lists

Head
Tail

Head
Tail

12 2 8 7 10 11 20
/ /

S1 S2

Disjoint-Sets as Linked Lists

Head
Tail

Head
Tail

12 2 8 7 10 11 20
/ /

S1 S2

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Head
Tail

Head
Tail

12 2 8 7 10 11 20
/ /

S1 S2

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Head
Tail

Head
Tail

12 2 8 7 10 11 20
/ /

S1 S2

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Head
Tail

Head
Tail

12 2 8 7 10 11 20
/ /

S1 S2

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Head
Tail

Head
Tail

12 2 8 7 10 11 20
/ /

S1 S2

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Head
Tail

Head
Tail

12 2 8 7 10 11 20
/ /

S1 S2

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Disjoint-Sets as Linked Lists

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Claim: A sequence of Make-Set, Union, and Find-Set operations,m

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Claim: A sequence of Make-Set, Union, and Find-Set operations,m

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

first of which are Make-Setn

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Claim: A sequence of Make-Set, Union, and Find-Set operations,m

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

first of which are Make-Setn
operations, takes time under the above heuristic. O(m + n log n)

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Linked Lists

Claim: A sequence of Make-Set, Union, and Find-Set operations,m

Proof: DIY.

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

first of which are Make-Setn
operations, takes time under the above heuristic. O(m + n log n)

S1 ∪ S2

Head
Tail

12 2 8 7 10 11 20
/

Disjoint-Sets as Trees

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

• Keep sets as rooted trees.

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

• Keep sets as rooted trees.
20

6 25

15 10 17

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

• Keep sets as rooted trees.

• Each node points to its parent.

20

6 25

15 10 17

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

• Keep sets as rooted trees.

• Each node points to its parent.

• Root is its own parent and the representative of the set.

20

6 25

15 10 17

Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

• Keep sets as rooted trees.

• Each node points to its parent.

• Root is its own parent and the representative of the set.

20

6 25

15 10 17

Representative

Height in Disjoint-Sets as Trees

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

8

6 3

15

11

10

2

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

8

6 3

15

11

10

2

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

Heights of all the nodes

8

6 3

15

11

10

2

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

(0)
Heights of all the nodes

8

6 3

15

11

10

2

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

(0)

(0)
Heights of all the nodes

8

6 3

15

11

10

2

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

(0)

(0)

(0)
Heights of all the nodes

8

6 3

15

11

10

2

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

(0)

(0)

(1)

(0)
Heights of all the nodes

8

6 3

15

11

10

2

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

(0)

(1)

(0)

(1)

(0)
Heights of all the nodes

8

6 3

15

11

10

2

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

(0)

(2)

(1)

(0)

(1)

(0)
Heights of all the nodes

8

6 3

15

11

10

2

Height in Disjoint-Sets as Trees
Defn: Height of a node in a disjoint set represented as a tree is the number of edges in theX
longest path from a descendant leaf to .x

Example:

(3)

(0)

(2)

(1)

(0)

(1)

(0)
Heights of all the nodes

Union on Disjoint-Sets as Trees

Union on Disjoint-Sets as Trees

8

6 3

15

Union on Disjoint-Sets as Trees

8

6 3

15

2

11

10

4

Union on Disjoint-Sets as Trees

8

6 3

15

2

11

10

4

Union(3,4)

Union on Disjoint-Sets as Trees

8

6 3

15

2

11

10

4

Union(3,4)

8

6 3

15

11

10

4

2

Union on Disjoint-Sets as Trees

8

6 3

15

2

11

10

4

Union(3,4)

8

6 3

15

11

10

4

2

Make the

representative

of one set point to

the representative

of the other set.

Union on Disjoint-Sets as Trees

8

6 3

15

2

11

10

4

Union(3,4)

8

6 3

15

11

10

4

2

Finding representative in the worst case will require steps5

Make the

representative

of one set point to

the representative

of the other set.

Union on Disjoint-Sets as Trees

8

6 3

15

2

11

10

4

Union(3,4)

8

6 3

15

11

10

4

2

Shouldn’t representative with smaller height point to representative with larger height?

Union on Disjoint-Sets as Trees

8

6 3

15

2

11

10

4

Union(3,4)

2

11

10

4

8

6 3

15

Union on Disjoint-Sets as Trees

8

6 3

15

2

11

10

4

Union(3,4)

2

11

10

4

8

6 3

15

Finding representative in the worst case now requires steps4

