Lecture 11

Disjoint-Set Data Structure

Source: Introduction to Algorithms, CLRS
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Many merges later

Groups:

There should be a way to tell to which group a user belongs.

We achieve that by having a representative for every group.
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Goal: Design a data-structure so that: Instead of optimising the

® Merging is fast. cost of individual operations
«— we will optimise a sequence

® Finding representative is fast. of such operations.
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Disjoint-set Data Structure

Disjoint-set data structure maintains:
® A collection § = {5,5,,...,5,} of disjoint dynamic sets.

® A representative for each set which is a member of the set.

Operations of disjoint-set data structure:

e Make-Set(x): Creates a new set with x as the only member. Make x its own representative.

e Union(x, y): Adds 5, U S, to the collection, where 5, and 5 contain x and y, respectively.

Choose a representative tor 5, U 5,. Destroys 5, and §,.

e Find-Set(x): Gives the representative of the unique set that contains x.
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Applications of Disjoint-set Data Structure

Disjoint-set data structure is usetul in:

® Finding friend groups on social networks.
® Finding connected components in graphs.
® Kruskal's algorithms to find minimum spanning tree.

® Finding systems on the same network, etc.
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Head
Tail

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Claim: A sequence of m Make-Set, Union, and Find-Set operations, first n of which are Make-Set

operations, takes O(m + nlogn) time under the above heuristic.

Proof: DIY.



Disjoint-Sets as Trees




Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:



Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

® Keep sets as rooted trees.



Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

® Keep sets as rooted trees.




Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

® Keep sets as rooted trees.

® Fach node points to its parent.




Disjoint-Sets as Trees

Idea: We maintain the dynamic disjoint sets in the following way:

® Keep sets as rooted trees.

® Fach node points to its parent.

® Root is its own parent and the representative of the set.



Disjoint-Sets as Trees

Representative

Idea: We maintain the dynamic disjoint sets in the following way:

® Keep sets as rooted trees.

® Fach node points to its parent.

® Root is its own parent and the representative of the set.
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Finding representative in the worst case now requires 4 steps



